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Progress Report

1. Introduction

It seems improbable that a single operating system will suffice to solve all the application
0 problems that are likely to arise in future real-time, embedded systems. A much more likely

sceparin is that future engineers, with support from a programming environment, will select and
adapt modules from program libraries. The selected modules must have proven operating
characteristics and the domain over which they are applicable must be well-defined.

The StarLite Project, which is supported by the Office of Naval Research, has the goal of
* constructing such a program library for real-time applications. The initial focus of the project is

on operating system and database support.
Another goal of the StarLite project is to test the hypothesis that a host prototyping

environment can be used to significantly accelerate our ability to perform experiments in the
areas of operating systems, databases, and network protocols. The primary project requirement
for StarLite is that software developed in the prototyping environment must be capable of being
retargeted to different architectures only by recompiling and replacing a few low-level modules.
The anticipated benefits are fast prototyping times, greater sharing of software in the research
community, and the ability for one research group to validate the claims of another by replicating
experimental conditions exactly.

As one measure of the effectiveness of the environment, it is often possible to fix errors in
the operating system, compile, and reboot the StarLite virtual machine in less than twenty
seconds. The compilation time on a SUN 3/280 for the 66 modules (7500 lines) that comprise
the operating system is one minute (clock) or 16 seconds (user time). The StarLite VM, as
measured by Wirth's Modula-2 benchmark program[I], executes at a speed of from one to six
times that of a PDP 11/40, depending on the mix of instructions.

The StarLite prototyping architecture is designed to support the simultaneous execution of
* multiple operating systems in a single address space. For example, to prototype a distributed

operating system, we might want to initiate a file server and several clients. Each virtual machine
would have its own operating system and user processes. All of the code and data for all of the
virtual machines would be executed as a single UNIX process.

In order to support this requirement, we assume the existence of high-performance
workstations with large local memories. Ideally, we would prefer multi-thread support, but
multiprocessor workstations are not yet widely available. We also assume that hardware details
can be isolated behind high-level language interfaces to the extent that the majority of a system's
software remains invariant when r-targeted from the host to a target architecture.

The progress to date and a brief description of future work for each of the StarLite
components are listed in Figure 1. Each component of the project is covered in greater detail in
later Sections. At the present time, all components execute on SUN workstations using the
StarLite Modula-2 system.

2. Related Activities

Cook and Son, participants in the IBM Manassas Real-Time Workshop, (April 1988).
* Cook and Son. participants in coordination meeting with Professor Tokuda from CMU and Pat

Watson from IBM, (July 1988).
Cook and Son, participants in coordination meeting with Pat Watson from IBM, (August 1988).
Cook, reviewed the Draft NATO Requirements and Design Criteria for the NATO Standard
Interface Specification of Ada Programming Support Environments at the request of LTC(P)
David R. Taylor (AJPO). (Feb. 1988).

* Cook, Session chair and panel member, Fifth IEEE Workshop on Real-Time Software and
Operating Systems, (May 1988).
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Son, participant San Jose ONR Real-Time Initiative Workshop, (Dec. 1987).
Son, Guest Editor, ACM SIGMOD Record, Special Issue on Real-Time Database Systems,

* (March 1988).

3. Student Participation

Chun-Hyon Chang (Post Doc.), priority-based contention protocol
Veena Bansal (Ph.D. student), debugger

* Jeremiah Ratner (Ph.D. student), database development
Yumi Kim (M.S.), multi-version database evaluation
Chris Koeritz(M.Sc. student), operating system
Richard Testardi(M.Sc.), compiler
Jenona Whitlach(M.S.), file system development
Nancy Yeager(M.S.), meta-file system

* Richard McDaniel(B.S. student), prototyping environment

4. Publications

*Journal Publications

(1) Cook, R. P. and S. H. Son, "StarLite, A Software Prototyping Environment," IEEE
Computer Special Issue on Rapid Prototyping, (submitted).

(2) Cook, R. P., "An Empirical Analysis of the Lilith Instruction Set," IEEE Transactions on
* Computers, (to appear).

(3) Son, S. H., "Replicated Data Management in Distributed Database Systems," ACM
SIGMOD Record, (to appear).

(4) Son, S. H., "Semantic Information and Consistency in Distributed Real-Time Systems,"
Information and Software Technology 30, September 1988 (to appear).

(5) Son, S. H., "Real-Time Database Systems: Issues and Approaches," ACM SIGVOD
Record, Special Issue on Real-Time Database Systems 17, 1, March 1988.

(6) Son, S. H., "Using Replication to Improve Reliability in Distributed Information Systems,"
Information and Software Technology 29, October 1987.

e Refereed Conference Publications

(7) Cook, R. P., "The StarLite Prototyping Architecture," Third International Conference on
Architectural Support for Programming Languages and Operating Systems, (submitted).

(8) Shebalin, P., S. H. Son, and C.-H. Chang, "An Approach to Software Safety Analysis in a
Distributed Real-Time System," Third Annual Conference on Computer Assurance
(COMPASS '88), Washington, DC, July 1988, pp 29-43.

(9) Son, S. H., "A Message-Based Approach to Distributed Database Prototyping," Fifth IEEE
*Workshop on Real-Time Software and Operating Systems, Washington, DC, May 1988, pp

71-74.
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(10) Son, S. H., "An Adaptive Checkpointing Scheme for Distributed Databases with Mixed
Types of Transactions," Fourth International Conference on Data Engineering, Los

* Angeles, California, Feb. 1988, pp 528-535.

(11) Son, S. H. and J. L. Pfaltz, "Reliability Mechanisms for ADAMS," Third Conference on
Hypercube Concurrent Computers and Applications, Pasadena, California, January 1988.

(12) Son, S. H., "Efficient Decentralized Checkpointing in Distributed Database Systems," 21st
Hawaii International Conference on System Sciences, Kailua-Kona, Hawaii, Jan. 1988,
Vol. 2, pp 554-560.

(13) Son, S. H., "Using Replication for High Performance Database Support in Distributed
Real-Time Systems," 8th IEEE Real-Time Systems Symposium, San Jose, California, Dec.
1987, pp 79-86.

* (14) Son, S. H., "A Recovery Scheme for Database Systems with Large Main Memory," 11th
International Computer Software and Applications Conference (COMPSAC 87), Tokyo,
Japan, Oct. 1987, pp 422-427.

*Technical Reports
I'

(15) Cook, R. P., "Minimizing Response Time".

(16) Cook, R. P., "An Introduction to Modula-2 for Pascal Programmers".

(17) Cook, R. P., "An Introduction to Modular Programming".

(18) Son, S. H. and Y. Kim, "A Prototyping Environment for Distributed Database Systems,"
Technical Report TR-88-20, Dept. of Computer Science, University of Virginia, August
1988.

(19) Shebalin, P., S. H. Son, and C.-H. Chang, "An Approach to Software Safety Analysis in a
-•Distributed Real-Time System," Technical Report TR-88-13, Dept. of Computer Science,

University of Virginia, May 1988.

(20) Son, S. H. and S. Tripathi, "Distributed Database Systems: Failure Recovery Procedure,"
,. Technical Report TR-88-6, Dept. of Computer Science, University of Virginia, March

1988.
4

5. The Prototyping Environment

The components of the environment include a Modula-2 compiler, a symbolic debugger, an
interpreter/runtime package, the Phoenix operating system, a visual simulation package, and
documentation. With Professor Davidson's help, we will eventually retarget his C compiler to
produce code for the interpreter/runtime package. Thus, either C or Modula-2 can be used for
development. The environment, which currently runs on PCs and SUNs, will also be portable to
other hosts.

The programming environment at present consists of a Modula-2 one-pass compiler,
interpreter, and simulation package. The compiler supports the Revised Modula-2 Language
Definition, except for the LONGREAL/CARD types: LONGINT is supported. Its compilation

-4-L',
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speed is twice as fast as the Logitech 286 compiler and five times as fast as the SUN-3 Modula-2
compiler. It also compiles faster than either the MicroSoft C compiler on a PC286 or the SUN-3

* C compiler. Fast compilation has been rated as essential to the success of a programming
environment (see, for example, Xerox CSL-80-10).

Both the compiler and runtime were ported to C during the past year. The compiler is also
implemented in Modula-2. The generated code is for a 32-bit virtual architecture(S-code) that is
designed to be extremely space efficient. For example, the object code sizes for a program
consisting of 1,000 assignment statements was SUN-Modula(130K), SUN-C(65K), PC286-

40 C(35K), PC286-Modula(1 1K). Compact code has a significant effect on the speed with which
the environment can load both system components and user-level programs that might run on
those components. Code generators for a number of target environments are planned for the
future. In fact, Professor Davidson had a MS student retarget the Modula-2 back-end to the VAX
over the summer to demonstrate the feasibility of this claim.

• The interpreter/runtime system for the enviioment is unique in a number of respects. First,
it supports dynamic linking; that is, modules are loaded at the point that one of their procedures is
called. Thus, a large software system begins execution very quickly and then loads only the
modules that are actually tested. At the current time, a linker is superfluous; as soon as a module
is compiled, it may be executed. The second feature of the interpreter is that it maximizes
sharing. There will be only one copy of shared code no matter how many times it is used at
either the user or operating system levels. Next, the clocks on the interpreter's virtual machines
are driven by the number of S-code instructions executed or the actions of simulated devices.
Thus, timings for the StarLite host environment can be used to approximate those in a target
environment by varying the ratio of S-code instructions necessary for a clock tick. Finally, the
interpreter is designed to support a number of different execution models.

During the past year, we completed the implementation of the distributed processor model
together with a window package that provides a virtual terminal for each processor. To date, we
have tested it with six nodes, each executing UNIX.

The visual simulation package incorporates many of the features of the GPSS simulation
language. The traditional "delay" function is provided, as well as the Store and Table simulation
types that are used for statistics gathering. Typically, the presence of simulation code is isolated

*P at the lowest levels of a system. By keeping interfaces compatible, a simulation module can be
repla:zd bv a module for the target machine. Thus, the higher levels of the software hierarchy
remain unchanged when moving code from the host environment to a target.

The final component of the environment is the symbolic debugger, which was also
completed during the past year. It allows the user to name any component of a running program
and to retrieve the value, type, or address associated with any name. Also, it has the capability to
examine multiple threads of control. Eventually, we will add support for user-defined "views" of
data abstractions and the ability to view data other than program images. For example, the
debugger could be used to examine, or modify, a file that was described in the Modula-2 Interface
Definition Language, which is supported by the compiler.

In summary, the environment is designed to maximize productivity. Therefore, it
accelerates a researcher's ability to conduct experiments, which advances the state-of-the-art.
While the initial version of the environment executes as a single UNIX process, future versions
could take excellent advantage of both load balancing to distribute a running prototype across a
number of machines and of multiprocessor support, such as is found in Mach or Taos.

6. Operating System
During the past year, additional functionality was added to the Phoenix operating system,

including a file system and a shell. The system is unique in that it is object-based and is

* -5-
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implemented as a module hierarchy. Also, Phoenix attempts to minimize the use of shared locks,
which is the opposite of most current UNIX implementations. Phoenix also uses an integrated
priority mechanism that is applied uniformly across all system queues.

Our goal for the coming year is to add real-time guarantees to the Phoenix system. If we
are successful, it will be the first such UNIX system. We will also be working to extend the
functionality of the operating system as we do not currently support all of SVID. In situations
where guarantees cannot be provided, we will change the UNIX interface.

During the past year, we also tested a distributed six-node Phoenix system. However, since
O we haven't implemented network device drivers, the nodes could not communicate. We will be

adding the drives during the coming year so that we can experiment with real-time issues in the
distributed programming area.

Another goal for the coming year is to integrate the Phoenix OS and the database system.
At the present time, the database research uses simulated file systems. By using Phoenix, real file
systems can be used at each node. As a result, any real-time guarantees that we can provide will

* be across a complete, end-to-end, distributed operating environment.

7. Database Systems
It has been recognized that database systems are assuming much greater importance in

real-time systems, which must maintain high reliability and high performance. State-of-the-art
database systems are typically not used in real-time applications due to two inadequacies: poor
performance and lack of predictability. Current database systems do not schedule their
transactions to meet response requirements and they commonly lock data tables indiscriminately
to assure database consistency. Locks and time-driven scheduling are basically incompatible.
Low priority transactions can and will block higher priority transactions leading to response
requirement failures. New techniques that are compatible with time-driven scheduling and the

*• system response predictability need to be investigated.

Our research effort during the past year was concentrated in two areas: investigating new
techniques for real-time database systems and developing a message-based database prototyping
environment. In addition, to avoid the useless effort in "re-inventing the wheel", Professor Son
has spent a significant amount of effort working as a guest editor for the ACM SIGMOD Record,
collecting current research work in real-time database systems being investigated by other

* researchers. Selected papers were published in the ACM SIGMOD Record special issue on Real-
Time Database Systems (Vol. 17, No. 1, March 1988). This was the first time that a whole issue
of the ACM SIGMOD Record, a publication widely circulated in the database research
community, has been devoted to a special topic. This was also the first time that research work in
real-time database systems was collected and published in a single issue.

7.1. New Approaches

Compared with traditional databases, real-time database systems have a distinct feature:
they must satisfy not only the database consistency constraints but also the timing constraints
associated with transactions. In other words, "time" is one of the key factors to be considered in
real-time database systems. Transactions must be scheduled in such a way that they can be
completed before their corresponding deadlines expire. For example, both the update and query
on a tracking data of a missile must be processed within the given deadlines: otherwise, the
information provided could be of little value.

We have investigated two approaches in designing real-time database systems. The first
approach is to redesign a conventional database system's architecture to replace bottleneck
components (e.g., a disk) by a high-speed version. A main-memory database system falls in this
category. The second approach is to trade desired features (such as serializability) for higher

-6-



performance or to exploit semantic information of transactions and data to use the notion of
correctness different from the serializability of transaction execution. This approach, combined

0 with effective use of data replication may improve performance and reliability.

The availability of large, relatively inexpensive main memories coupled with the demand
for faster response time for real-time database systems has brought a new perspective to database
system designers: main memory databases in which the primary copies of all data reside
permanently in main memory. Since database operations are mostly /O bound, elimination of
disk access delays can contribute to substantial improvement in transaction response time.
However, the migration of data from secondary storage to main memory requires a careful
investigation of the components of traditional database management systems, since they
introduce some potential problems of their own. The most critical problem is associated with the
recovery mechanism of the system, which must guarantee transaction atomicity and durability in
the face of system failures. We have developed a recovery mechanism based on non-interfering
consistent checkpointing and log compression. On-line log compression is necessary to keep the

0P log short to achieve a rapid restart. Compression can be used by any database system to improve
restart time, but is essential for main memory database systems which may achieve very high
transaction throughput. As opposed to most other recovery techniques, our technique has the
advantage that a portion of memory can be made non-volatile by using batteries as a backup
power supply. By exploiting this portion of non-volatile memory, log compression can be
achieved effectively.

Performance of real-time database systems can be enhanced by the use of semantics of
transactions and temporal data models, based on different notions of "correct execution" of
transactions. Since all transactions are pre-compiled in many real-time database systems,
semantic information such as types of transactions and data objects they need to access can be
collected and used effectively. A read-only transaction is a typical example of the use of
transaction semantics. A read-only transaction can be used to take a checkpoint of the database
for recovering from subsequent failures, or to check the consistency of the database, or simply to
retrieve the information from the database. Since read-only transactions are still transactions,
they can be processed using the algorithms for arbitrary transactions. However, it is possible to
use special processing algorithms for read-only transactions in order to improve efficiency,
resulting in high performance.

Serializability has been accepted as the standard correctness criteria in database systems.
However, people actually developing large real-time systems are unwilling to pay the price for
serializability, because predictability of response is severely compromised due to blocking or
preemption. For read-only transactions, correctness requirements can be divided into two
independent classes: the currency requirement and the consistency requirement. The currency
requirement specifies what update transactions should be reflected by the data read. The
consistency requirement specifies the degree of consistency needed by read-only transactions:
internal consistency, weak consistency, and strong consistency. High performance and reliability
of the system can be achieved by using different correctness requirements for read-only
transactions. Clearly, strong consistency is preferable in many situations to weak consistency.
However, it can be cheaper to ensure weak consistency than to ensure strong consistency. For the
applications that can tolerate a weaker requirement, the potential performance gain could be
significant. We have investigated methods to specify correctness requirements and new
techniques to combine them with data replication. Our research effort has resulted in a feasible
solution using time-stamps and multivcrsions of data objects.

7.2. Development of A Database Prototyping Tool

One of the primary reasons for the difficulty in successfully developing and evaluating new
techniques for distributed database systems is that it takes a long time to develop a system, and

-7-
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evaluation is complicated because it involves a large number of system parameters that may
change dynamically. Prototyping methods can be applied effectively to the evaluation of new
techniques for implementing distributed database systems. By investigating design alternatives
and performance/reliability characteristics of new database techniques, we can provide a clear
understanding of design alternatives with their costs and benefits in quantitative measures.
Furthermore, database technology can be implemented in a modular reusable form to enhance
experimentation. Although there exist tools for system development and analysis, few
prototyping tools exist for distributed database experimentation, especially for distributed real-

* .time database systems.
A prototyping tool to implement database technology should be flexible and organized in a

modular fashion to provide enhanced experimentation capability. A user should be able to
specify system configurations such as the number of sites, network topology, the number and
locations of processes, the number and locations of resources, and the interaction among
processes. We use he client/server paradigm for process interaction in our prototyping tool. The

Y system consists of a set of clients and servers, which are processes that cooperate for the purpose
of transaction processing. Each server provides a service to the clients of the system, where a
client can request a service by sending a request message to the corresponding server,

-,.. We have implemented a preliminary version of the prototyping tool running under StarLite
on a Sun workstation. The current prototyping tool provides concurrent transaction execution
facilities, including two-phase locking and timestamp ordering as underlying synchronization
mechanisms. A series of experiments have been performed to test the correctness of the design
and validity of the preliminary implementation of those two synchronization mechanisms. The
primary performance metrics for the study were transaction response time, system throughput,
and the number of aborted transactions. As a general rule, we found that transaction response
time, in both mechanisms, increases with the increase of the degree of data distribution and the
number of conflicts. The current prototyping tool also provides a multiversion data object control
mechanism.

In a real-time database system, synchronization protocols must not only maintain the
consistency constraints of the database but also satisfy the timing requirements of the transactions
accessing the database. To satisfy both the consistency and real-time constraints, there is the

* need to integrate synchronization protocols with real-time priority scheduling protocols. A major
source of problems in integrating the two protocols is the lack of coordination in the development
of synchronization protocols and real-time priority scheduling protocols. Due to the effect of
blocking in lock-based synchronization protocols, a direct application of a real-time scheduling
algorithm to transactions may result in a condition known as priority inversion. Priority
inversion is said to occur when a higher priority process is forced to wait for the execution of a

4" lower priority process for an indefinite period of time. Priority inversion is inevitable in
6V transaction systems. However, to achieve a high degree of schedulability in real-time

applications, priority inversion must be minimized. We have been implementing priority-based
scheduling algorithms in our prototyping environment, and investigating technical issues
associated with them.

I
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Semantic Information and Consistency
* •in Distributed Real-Time Systems

Sang Hyuk Son

o Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903

ABSTRACT

Considerable research effort has been devoted to the problem of developing techniques for achiev-

ing high availability of critical data in distributed real-time systems. One approach is to use replication.

Replicated data is stored redundantly at multiple sites so that it can be used even if some of the copies are

not available due to failures. This paper presents an algorithm for maintaining consistency and improving

the performance of database with replicated data in distributed real-time systems. The semantic informa-

tion of read-only transactions is exploited for improved efficiency, and a multiversion technique is used to

increase the degree of concurrency. Related issues including version management and consistency of the

states seen by transactions are discussed.

." Index Terms: distributed system, replication, read-only transaction, consistency, multiversion.
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1. Introduction

A distributed system consists of multiple autonomous computer systems (called sites) that are con-

*" nected via a communication network. Since the physical separation of sites ensures the independent

* failure modes of sites and limits the propagation of errors throughout the system, distributed systems

0 must be able to continue to operatc correctly despite of component failures. However, as the size of a dis-

tributed system increases, so does the probability that one or more of its components will fail. Thus, dis-

tributed systems must be fault tolerant to component failures to achieve a desired level of reliability and

(V availability. Asserting that the system will continue to operate correctly if less than a certain number of

failure occurs is a guarantee independent of the reliability of the sites that make up the system. It is a

measure of the fault tolerance supported by the system architecture, in contrast to fault tolerance achieved

by using reliable components.

Considerable research effort has been devoted in recent years to the problem of developing tech-

niques for achieving high availability of critical data in distributed systems. An obvious approach to

improve availability is to keep replicated copies of such data at multiple sites so that the system can

access the data even if some of the copies are not available due to failures. In addition to improved avai-

lability, replication can enhance performance by allowing user requests initiated at sites where the data

are stored to be processed locally without incurring communication delays, and by distributing the work-

load of user requests to several sites where the subtasks of a user request can be processed concurrently.

These benefits of replication must be seen in the light of the additional cost and complexities introduced

by replication control.

A major restriction of using replication is that replicated copies must behave like a single copy, i.e.,

mutual consistency of a replicated data must be preserved. By mutual consistency, we mean that all

copies converge to the same value and would be identical if all update activities cease. The inherent com-

munication delay between sites that store and maintain copies of a replicated data makes it impossible to

ensure that all copies are identical at all times when updates are processed in the system.

-10-



Mutual consistency is not the only constraint a distributed system must satisfy. In a system where

several users concurrently access and update data, operations from different user requests may need to be

4. interleaved and allowed to operate concurrently on data for higher throughput of the system. Concurrency

control is the activity of coordinating concurrent accesses to the system in order to provide the effect that

each request is executed in a serial fashion. The task of concurrency control in a distributed system is

more complicated than that in a centralized system mainly because the information used to make schedul-

ing decisions is itself distributed, and it must be managed properly to make correct decisions.

A number of concurrency control schemes proposed are based on the maintenance of multiple ver-

sions of data objects[BAY80, BER83, CHA85, REE83 SON86, SON87, STE81]. The objective of using

multiple versions is to increase the degree of concurrency and to reduce the possibility of rejection of user

requests by providing a succession of views of data objects. One of the reasons for rejecting a user request

is that its operations cannot be serviced by the system. For example, a read operation has to be rejected if

the value of data object it was supposed to read has already been overwritten by some other user request.

4P Such rejections can be avoided by keeping old versions of each data object so that an appropriate old

value can be given to a tardy read operation. In a system with multiple versions of data, each write opera-

tion on a data object produces a new version instead of overwriting it. Hence, for each read operation, the

* system selects an appropriate version to read, enjoying the flexibility in controlling the order of read and

write operations.

A read-only transaction is a user request that does not modify the state of the database. A read-only

transaction can be used to take a checkpoint of the database for recovering from subsequent failures, or to

check the consistency of the database, or simply to retrieve the information from the database. Many

applications of distributed databases for real-time systems can be characterized by a dominance of read-

only transactions. Since read-only transactions are still transactions, they can be processed using the algo-

rithms for arbitrary transactions. However, it is possible to use special processing algorithms for read-

only transactions in order to improve efficiency, resulting in high performance. With this approach. the
,4 specialized transaction processing algorithm can take advantage of the semantic information that no data
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will be modified by the transaction.

In this paper, we explore this idea of read-only tramacdon processing, and present a synchroniza-

tion algorithm for read-only transactions in distributed environments. The algorithm is based on the idea

of maintaining multiple versions of necessary data objects in the system, and requires read-only transac-

tions to be identified to the system before they begin execution. By preventing interference between

read-only transactions and other update transactions, the algorithm guarantees that read-only transactions

will be successfully completed. In addition, the replication method used in the algorithm masks failures

as long as one or more copies remain available.

There are several problems that must be solved by an algorithm that uses multiple versions. For

example, selection of old versions for a given read-only transaction must ensure the consistency of the

state seen by the transaction. In addition, the need to save old versions for read-only transactions intro-

duces a storage management problem, i.e., methods to determine which version is no longer needed so

that it can be discarded. In this paper, we focus our attention on these problems.

In the next section we present the basic concepts that are needed for this paper. Section 3 describes

the execution of logical operations by corresponding physical operations. Section 4 describes our syn-

* chronization algorithm for replicated data. Section 5 presents two recovery procedures that can be used

for replicated data objects, and Section 6 discusses the availability of replicated data. Section 7 concludes

the paper.

2. Basic Concepts

A distributed database is a collection of data objects. Each data object has a name and is represented

by a set of one or more replicated copies. Copies of a given data object should have the same value,

although the values may be temporarily different due to update activities. In addition to data objects, a

distributed database has a collection of consistency constraints. A consistency constraint is a predicate

defined on the database which describes the relationships that must hold ainorg the data objects and their

values [ESW76].

o -12-
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Users interact with the database by submitting transactions. Each transaction represents a complete

and correct computation. i.e., if a transaction is executed alone on an initially consistent database, it

%N 3uld terminate in a finite time and produce correct results, leaving the database consistent. A transaction

consists of different types of operations such s ,-ad, "-.'ritr, and local computations. Read and write

operations are used to access data objects, and local computations are used to determine the new values of

data objects for write operations. Algorithms for replication control and synchronization pay no attention

to local computations; they make scheduling decisions on the basis of the data objects a transaction reads

and writes.

When a transaction commits, all the updates it made must be written permanently into the database.

All participants must commit unanimously, implying that the updates performed by the transaction are

made visible to other transactions in an "all or none" fashion. One of the most well-known techniques

for the atomic commitment is a protocol called two-phase commit [SKE81], which works as the follow-

ing:

In the first phase the coordinator sends "start transaction" messages to all the participants. Each partici-

pant individually votes either to commit the transaction by sending precommit message or to abort it by

*sending abort message, according to the result of the subtransaction it has executed. If a failure occurs

during the first phase, consistency of the database is not violated, since none of the transaction's updates

have yet been written into the database. In the second phase the coordinator collects all the votes and

makes a decision. If all votes were precommit, the coordinator sends "commit" messages to the partici-

pants. If the coordinator had received one or more abort messages, it sends "abort" messages to the parti-

cipants.

The standard correctness requirement fcr transactions is serializability. It means that the concurrent

execution of a group of transactions is equivalent to some serial execution of the same group of transac-

tions. For read-only transactions, correctness requirements can be divided into two independent classes:

the currency requirement and the consistency requirement.

-13-
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The currency requirement specifies what update transactions should be reflected by the data read.

* There are several ways in which the currency requirement can be specified; we are interested in the fol-

lowing two:

(1) Fixed-time requirement: A read-only transaction T requires data as they existed at a given time t.

This means that the data read by the transaction must reflect the modifications of all update tran-

sactions committed in the system before t.

(2) Latest-time requirement: A read-only transaction T requires data it reads reflect at least all update

transactions committed before T is started, i.e., T requires most up-to-date data available.

The consistency requirement specifies the degree of consistency needed by read-only transactions.

A read-only transaction may have one of the following requirements:

(I) Internal consistency: It only requires that the values read by each read-only transaction satisfy the

invariants (consistency constraints) of the database.

(2) Weak consistency: It requires that the values read by each read-only transaction be the result of a

serial execution of some subset of the update transactions committed. Weak consistency is at least

as strong a requirement as internal consistency, because the result of a serial execution of update

transactions always satisfies consistency constraints.

(3) Strong consistency: It requires that all update transactions together with all other read-only tran-

sactions that require strong consistency, must be serializable as a group. Strong consistency

requirement is equivalent to serializability requirement for processing of arbitrary transactions.

We make a few comments concerning the currency and consistency requirements. First, it might

seem that the internal consistency requirement is too weak to be useful. However, a read-only transaction

with only internal consistency requirement is very simple and efficient to process, and at least one pro-

posed algorithm [FIS82J does not satisfy any stronger consistency requirement. Second, it is easy to see

that strong consistency is a stronger requirement than weak consistency, as shown by the following exam-

ple. Suppose we have two update transactions, TI and T2 , two read-only transactions, T3 and T4, and two

B -14-
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data objects. K and Y, stored at two sites A and B. Assume that the initial values of both X and Y were 0

before the execution of any transactions. Now consider the following execution sequence:

T3 reads 0 from X at A.

0 T, writes I into X at A.

T4 reads I from X at A.

T4 reads 0 from Y at B.

* T 2 writes I into Y at B.

T3 reads 1 from Y at B.

The values read by T3 are the result of a serial execution of T2<T 3<T l , while the values read by T4 are

the result of a serial execution of TI<T4 <f 2. Both of them are valid serialization order, and thus, the exe-

cution is weakly consistent. However, there is no single serial execution of all four transactions, so the

execution is not serializable. In other words, both read-only transactions see valid serialization orders of

updates, but they see different orders.

Clearly, strong consistency is preferable to weak consistency. However, as in the case of internal

* consistency, it can be cheaper to ensure weak consistency than to ensure strong consistency. For the

applications that can tolerate a weaker requirement, the potential performance gain could be significant.

Finally, one might wonder why fixed-time requirement is interesting, since most read-only transac-

tions may require information about the latest database state. However, there are situations that the user is

interested in looking at the database as it existed at a given time. For an example of a fixed-time read-only

transaction, consider the case of a general in the army making a decision by looking at the database show-

ing the current position of the enemy. The general may be interested in looking at the position of the

. enemy of few hours ago or few days ago, in order to figure out the purpose of their moving. A read-only

transaction of a given fixed-time will provide the general with the desired results.

-15-
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3. Execution of Logical Operations

In our algorithm, we use the notion of tokens to support a fault-tolerant distributed database in

increasing both the availability of data and the degree of concurrency, without incurring too much storage

and processing overhead. Each data object has a predetermined number of tokens. Tokens are used to

designate a read-write copy, and a token copy is a single version representing the latest value of the data

object. The site which has a token copy of a data object is called a token site, with respect to the data

object.

Multiversions are stored and managed only at read-only copy sites. For read-only copies, each data

object is a collection of consecutive versions. A read-only transaction does not necessarily read the latest

committed version of a data object. The particular old version that a read-only transaction has to read is

determined by the time-stamp of the read-only transaction (for the latest-time requirement) or by the

given time (for the fixed-time requirement). The time-stamp is assigned to a read-only transaction when it

begins, while the time-stamp for an update transaction is determined as it commits. When a read-only

transaction with time-stamp T attempts to read a data object, the version of the data object with the larg-

est time-stamp less than T is selected as the value to be returned by the read operation.

• To simplify the presentation in this paper, we use a simple model of data objects, with only read and

write operations, instead of considering an abstracted data model. As discussed in (HER86], greater con-

currency among update transactions can be achieved if more semantic information about the specification

of each abstract data object is used. The algorithm presented in this paper can be easily adapted to use this

kind of semantic information of data objects.

In this paper, we do not consider Byzantine type of failures. When a site fails, it simply stops run-'

4 ning (fail-stop). When the failed site recovers, the fact that it has failed is recognized, and a recovery pro-

cedure is initiated. We assume that site failures are detectable by other sites. This can be achieved either

by network protocols or by high-level time-out mechanisms in the application layer.

...
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We assume that update transactions use two-phase locking [ESW76], with exclusive locks used for

*6 write operations, and shared locks for read operations. Lock requests are made only to token copies, and

there is no locks associated with read-only copies. In addition, update transactions use the two-phase

• .commit protocol and stable storage CLAM8 11 to achieve fault-tolerance to site failures. When a new ver-

4* sion is created, it is created at all copy sites, including read-only copy site. However, any new versions

are not accessible to other transactions until they are finalized through the two-phase commit protocol.

Upon receiving the commit message from the coordinator, new versions of data objects createa by the

* transaction replace the current versions at token sites, while they are attached to the multiple versions at

read-only sites.

Operations invoked by update transactions are processed using ordinary two-phase locking: when an

update transaction invokes a read operation on a data object, it waits until it can lock the data object in

," shared mode. When an update transaction invokes a write operation, it locks the dat? object in exclusive

mode, and then creates a new version. If the transaction later aborts, the newly created version will be dis-

carded. Our algorithm follows the read-one/write-all-available paradigm [BHA86] in which a read lock

request succeeds if at least one of the token copies can be locked in shared mode, and a write lock request

fails if at least one of the available token copies cannot be locked in exclusive node. In a straightforward

implementation of a write operation in this paradigm, the value to be written is broadcast to all sites

where a copy of the data object resides. A physical write operation occurs at each copy site, and then a

confirmation message has to be returned to the site where the write operation was requested. The write

operation is considered completed urily when all the confirmation messages are returned. This solution is

unsatisfactory because every write operation incurs waiting for responses before the next operation of the

transaction can proceed. In the next section, we present an algorithm that permits an operation after a

write to proceed as in a nonreplicated system, with the physical write operations being executed con-

currently at other copy sites.

I
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4. The Algorithm

As noted above, our algorithm combines time-stamp ordering and locking. To generate time-stamps

for update transactions, a time-stamp is maintained for each data object. The time-stamp for data object X

represents the maximum of the time-stamps of update transactions that have accessed X and committed,

and the time-stamps of read-only transactions that have accessed X. Time-stamps for update transactions

are generated during the commit phase as follows:

In the first phase of the two-phase commit protocol, each participant attaches to the precommit message

the maximum time-stamps of all data objects that it accessed. Upon receiving precommit messages from

the participants, the coordinator chooses a unique time-stamp greater than all the time-stamps received.

This is the time-stamp for the transaction. Then, in the second phase of the commit protocol, this time-

stamp is broadcast to all participants (piggybacked on the commit message). Each participant, upon

receiving this message, updates the time-stamp of each data object to the maximum of its current value

and the received time-stamp, and releases any locks held by the transaction. Any version written by the

transaction is marked with the time-stamp of the transaction. Figure I shows the message passing

between the coordinator and participants. Note that time-stamps are piggybacked on the precommit and

commit messages, hence no additional messages are introduced here.

o

:"@TS~mxTi)S

Fig. 1. Time-stamp generation for update transactions
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When a participant searches for the maximum time-stamp to attach to a precommit message, read-

only copies ae also included in the set of copies for the search. By including the time-stamps of read-

only copies in determining the time-stamp for an update transaction, the system can ensure that any

potential conflicts between read-only transactions and the current update transaction are resolved in the

correct order of their time-stamps.

Time-stamp assignment for read-only transactions with latest-time requirement is quite different

from that for update transactions. When a read-only transaction begins, the coordinator sends messages to

2. Othe participants telling them the data objects the transaction needs to read. When a participant receives

such a request, it checks the current time-stamp of each data object at the site, and sends the maximum

time-stamps among them to the coordinator. Each data object accessed by a read-only transaction in this

,, way records the pair of the identifier of that transaction and the current time-stamp it reported. After

receiving responses from all participants, the coordinator chooses a unique time-stamp greater than all the

responses. The time-stamp recorded for the read-only transaction at each object is thus a lower bound on

*O the time-stamp of the transaction, and it will be used in making a decision to discard or retain versions of

the data object. For a fixed-time read-only transactions, time-stamp is provided by the user, and hence the

system needs not bother to assign a new time-stamp for it.

When a read-only transaction with time-stamp TS invokes a read operation on a data object, the par-

ticipant chooses the version of the data object with the largest time-stamp less than TS. This invocation of

read operation is nothing but sending the time-stamp TS to the participants, since each participant already

knows which data object to read. If TS is larger than the current time-stamp of the data object, it will be

updated as TS. This will force update transactions that commit later to choose time-stamps larger than

TS, ensuring that the version selected for the read-only transaction does not change.

Figure 2 shows the operation sequence for time-stamp generation and read request processing for

read-only transactions. The coordinator sends read requests for data object X and Y, each of which is

maintained as two versions stored at participants P1 and P2. Pn responds with time-stamp value of 15, and

-19-
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P2 with 20. The coordinator chooses a unique time-stamp (21 in this case), and sends it to each partici-

pant. Time-stamps of the data objects (X2 and Y2) are changed to 21 when read operation is completed.

It is easy to show that the above algorithm ensures strong consistency. The mechanism for generat-

ing time-stamps for update transactions ensures that any conflicting update transactions are ordered

according to their time-stamps, and hence they are serializable in the time-stamp order. Read-only

P, P

1 ~X1:l0Y"1

X2:l5Y:2

(a) read requests from the coordinator

S
toX :" 

Y1 :12
* X2:15 Y2:20

(b) time-stamp report from participants

X1:'10 Y1:12X,:21 Y2:21

(c) read operation with unique time-stamp

Fig. 2. Time-stamp generation for read-only transactions
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transactions then read versions of data objects consistent with all transactions executing in their time-

*l stamp order.

* To achieve the high performance by reducing the cost of write operations in our algorithm, the level

of synchronization between write operation and its physical implementation can be relaxed by allowing

physical write operations to be completed by the commit time of the transaction. A write operation is con-

sidered completed when the required update messages are sent. This eliminates the delay caused by wait-

ing for confirmation messages before the next operation can proceed.

To this point we have assumed that all versions are retained forever. We now discuss how versions

can be discarded when they are not needed by read-only transactions. Recall that each data object keeps

• ,track of the read-only transactions that have accessed the data object, along with a lower bound on the

time-stamp chosen by each transaction. Data objects can use the following rule to decide which versions

to keep and which to discard.

*B Rule for retention:

A version with time-stamp TS must be retained if

(1) there is no version with time-stamp greater than TS (i.e., current version), or

(2) there is a version with time-stamp TS' > TS, and there is an active read-only transaction whose

time-stamp might be between TS and TS'.

By having a read-only transaction inform data objects when it completes, versions of data objects that ire

no longer needed can be discarded. This process of informing data objects that a read-only transaction has

completed need not be performed synchronously with the commit of the transaction. It imposes some
4
- overhead on the system, but the overhead can be reduced by piggybacking information on existing mes-

sages, or by sending messages when the system load is low,

When a read-only transaction sends a read request to an object, the read-only site effectively agrees
4

to retain the current version and any later versions, until it knows which of those versions is needed by the

4-21-
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read-only transaction. When the read-only site finds out the time-stamp chosen by the transaction, it can

tell exactly which version the transaction needs to read. At that point any versions that were retained only

because the read-only transaction might have needed them can be discarded. By minimizing the time dur-

ing which only a lower bound on the transacLion's time-stamp is known, the system can reduce the

storage needed for maintaining versions. One simple way of doing this is to have each read-only transac-

tion broadcast its time-stamp to all read-only sites when it chooses ute time-stamp.

The version management described above is effective at minimizing the amount of -torage needed

for versions. For example, unlike the "version pool" scheme in [CHA851, it is not necessary to discard a

version that is needed by an active read-only transaction because the buffer space is being used by a ver-

sion that no transaction wants to read. However, ensuring that each read-only site knows which versions

* are needed at any point in time has an associated cost; a read-only transaction cannot begin execution

until it has chosen a time-stamp, a process that requires communicating with all data objects it needs to

access.

Because the time-stamp for a fixed-time read-only transaction is determined by the user, the number

of versions that needs to be retained to process fixed-time read-only transactions cannot be bounded as in

the case for latest-time read-only transactions. In order to process all the potential fixed-time read-only

transactions, the system must maintain all the versions created up to the present, which may require huge

amount of storage. There are several alternatives to keep a history instead of saving all the versions

created for each data object. One of the simplest and efficient alternative would be to keep a log of all the

update transactions. A transaction log is a record of all the transactions and the updates they performed.

Fixed-time read-only transactions can be processed by examining the log in reverse chronological order

until the desired version of the data object can be reconstructed. Since fixed-time read-only transactions

must examine the log, their execution depends on the availability of the log, and their execution speed

would be slower than that of latest-time read-only transactions. One inportant advantage of the transac-

tion log mechanism is that in many systems the log is required anyway for crash recovery. Thus, in these

systems, keeping the log for fixed-time read-only transactions represents no real overhead.

* -22-
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Performance of synchronization algorithms can be evaluated by several aspects: storage require-

* iment, number of aborts, and average transaction response time. Storage requirement is proportional to the

number of versions to be maintained in the system. The algorithm presented in this paper achieves storage

reduction by two methods: token copies and version retention rule. The amount of reduced storage

* Orequirement by introducing token copies is a function of the number of tokens for data objects and the

average number of versions to be maintained for each data object. For example, if two copies are token

copies for a four-copy data object with ten versions, we can save twenty versions for that data object.

STTotal reduction of storage requirement for the database is

Storage reduction = (number of token copies of data,) x (number of versions ot data,)
• i=1

where N is the number of data objects in the database.

Version retention rule also contributes to the reduction of the number of versions by allowing the system

,- to maintain only those versions that will be used for read operations.

Read-only transactions are never aborted and their response time is reduced because they do not

need to go through two-phase commit protocol. Furthermore, access requests from read-only transactions

do not require to access token copies, and hence no blocking is introduced by update transactions. This

results in further reduction of response time of read-only transactions. In general, the number of aborts

and average transaction response time for a given set of transactions depend on system parameters and

read-set/write-set of transactions, making analytical evaluation complicated. A prototyping tool for exper-

- imenting distributed database systems is being developed at the University of Virginia, and a quantitative

- evaluation of the proposed algorithm will be performed and reported in a separate paper.

4
* 5. Concluding Remarks

Replication is the key factor in making distributed systems more reliable than centralized systems.

However, if replication is used without proper synchronization mechanisms, consistency of the system
I

* -. might be violated. In this paper, we have presented a synchronization algorithm for distributed real-time
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systems with replicated data. It reduces the time required to execute physical write operations when

updates are to be made on replicated data objects, by relaxing the level of synchronization between write

operations on data objects and physical write operations on copies of them. At the same time, the con-

sistency of replicated data is not violated, and the atomicity of transactions is maintained. The algorithm

*O exploits the multiple versions of a data object and the semantic information of read-only transactions in

achieving improved system performance. The algorithm also extends the notion of primary copies such

that an update transaction can be executed provided at least one token copy of each data object in the

* Owrite set is available. The number of tokens for each data object can be used as a tuning parameter to

adjust the robustness of the system. Multiple versions are maintained only at the read-only copy sites,

hence the storage requirement is reduced in comparison to other multiversion mechanisms[REE83,

* CHA85].

Reliability does not come for free. There is a cost associated with the replication of data: storage

requirement and complicated control in synchronization. For appropriate management of multiple ver-
Np

sions, some communication cost is inevitable to inform data objects about activities of read-only transac-

tions. There is also a cost associated with maintaining the data structures for keeping track of versions and

time-stamps. In many real-time applications of distributed databases, however, the cost of replication is

Pjustifiable. Further work is clearly needed to develop alternative approaches for maintaining multiversions

and exploiting semantic information of read-only transactions, and to study performance of different

approaches.
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The StarLite Prototyping Architecture

1. Introduction
The goal of the StarLite project is to test the hypothesis that a host prototyping environment

can be used to significantly accelerate our ability to perform experiments in the areas of operating
systems, databases, and network protocols. This paper discusses the requirements for an

* architecture to support software prototyping and the current StarLite implementation. The
requirements suggest an architecture quite different from the RISC architectures currently in
vogue. However, the resulting interpreter has characteristics that make it ideally suited to
execute on current RISC machines.

The primary project requirement for StarLite is that software developed in the prototyping
* environment must be capable of being retargeted to different architectures only by recompiling

and replacing a few low-level modules. The anticipated benefits are fast prototyping times,
greater sharing of software in the research community, and the ability for one research group to
validate the claims of another by replicating experimental conditions exaztly.

The components of the StarLite project include a Moaula-2 compiler, a symbolic debugger,
an interpreter for the prototyping architecture, and a visual simulation package. The compiler

* and interpreter are implemented in C for portability; the rest of the software is in Modula-2. The
prototyping environment has been used to develop a non-proprietary, UNIX-like operating
system that is designed for a multiprocessor architecture, as well as to perform experiments with
concurrency contrc! algorithms for distributed database systems.

As one measure of the effectiveness of the environment, it is often possible to fix errors in
• the operating system, compile, and reboot the StarLite virtual machine in less than twenty

seconds. The compilation time on a SUN 3/280 for the 66 modules (7500 lines) that comprise
the operating system is one minute (clock) or 16 seconds (user) time. The StarLite VM, as
measured by Wirth's Modula-2 benchmark program[l], executes at a speed of from one to six
times that of a PDP 11/40, depending on the mix of instructions.

• 2. Architectural Requirements for Prototyping
The StarLite prototyping architecture is designed to support the simultaneous execution of

multiple operating systems in a single address space. For example, to prototype a distributed
operating system, we might want to initiate a file server and several clients. Each virtual machine
would have its own operating system and user processes. All of the code and data for all of the
virtual machines would be executed as a single UNIX process.

0 In order to support this requirement, we assume the existence of high-performance
workstations with large local memories. Ideally, we would prefer multi-thread support, but
multiprocessor workstations are not vet widely available. We also assume that hardware details
can be isolated behind high-level language interfaces to the extent that the majority of a system's
software remains inariant when retargeted from the host to a target architecture.

* The architectural requirements to be satisfied by an interpreter that supports multiple
operating systems running in a single, large address space are interesting. They include high
speed, compact code, exception handling, good error deiection, demand loading, dynamic restart,
fast context switches, hybrid execution modes, and portability.

In the following sections, we will justify our requirements.
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High Speed. Obviously, the speed of the host architecture is a determining factor in the
usefulness of any prototyping effort. Prototyping is most effective for logic-intensive programs,

* such as operating systems, because the ratio of code to code-executed-per-function is high. For
example, running user programs at the shell level on top of the prototype operating system, which
is running on an interpreter, provides a response-level comparable (several seconds ) to a PDP-1 1.
As the number of users increase or as the number of data-intensive applications increase, the
response time increases considerably. Data-intensive programs tend to apply a large percentage
of their code to each data point. Thus, the number of data points determines execution speed. In

*' many cases, having fast machines is the only effective way to prototype data-intensive
applications.

Since the StarLite system uses an interpreter to define its virtual machines, we tend to stay
, away from data-intensive test programs. It would be nice to have an execution speed comparable

to a bare machine, but that could only be achieved by building a software prototyping
workstation. For now, we are satisfied as long as the edit-compile-boot-and-test cycle is

0I significantly faster uan any other environment.

The interpreter is implemented as a single procedure to take advantage of C's register
declaration. For example, an earlier version of the interpreter used static variables for the
registers. The conversion to register variables improved performance by a factor of three on a
SUN 3/280.

Since the SUN 3/280 is based on the M68020, the number of virtual machine registers that
could be assigned to hardware registers was limited to three. Above that number, performance
started to drop off as the C compiler generated extra code to compensate for the reduction in

.. usable registers. In current RISC machines, such as MIPS or the SUN 4, this limit would not be a
problem. The use of multiple registers, and the lack of context switches, as well as a minimal
number of procedure calls should enable the interpreter to take full advantage of the4. characteristics of these processors.

The StarLite architecture is a 32-bit extension of Wirth's Lilith architecture[l ], which in
turn is a descendent of the Xerox Alto processor. It is also a contraction. For instance, the Lilith
uses an evaluation stack of registers with hardware stack pointer and no overfiow/underflow
checking. This is a good idea in a hardware implementation; however for the prototyping

* Iarchitecture, it would result in memory-to-memory copies of the evaluation stack on procedure
calls and context switches. Therefore, we modified the architecture to support a pure stack model
of execution.
- .The instruction stream is byte-coded and there are no highly encoded instructions. As a
result the physical interpretation is fast; for example, the interpreter's main loop is 5 instructions
on a M68020. This could be reduced to two instructions by generating threaded code but that

*l would negate the portability goal.
With an interpreter, the instruction set architecture can assign lots of functionality to each

instruction. This has two advantages. First, the function is executed in hardware, which makes it
fast. Second, the overhead of multiple passes through the interpretation loop is saved. The

"'. instruction set has been carefully tuned by analyzing all of the system code for the Lilith
- environment and by using the Xerox analysis[2] of Mesa.

The StarLite environment actually supports a family of architectures for which the
interpreters have different characteristics. For example, adding a single-step trace option costs
three additional instructions per loop. In another version, the virtual clock is driven by
instruction execution (1 tick per 100 instructions). Having the clock regulated by instruction
execution is advantageous lbr optimizing code and experimenting with real-time systems:

4 however, it costs an additional three instructions per loop.
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Another version of the architecture was created just to support the UNIX "fork" operation,
which requires dynamic relocation on data references. This feature does not slow the

* interpretation loop but rather it has an effect on every instruction that loads or stores data. It is
possible to continue increasing the degree of detail in the interpreter until a level equivalent to
IBM's VM emulation[3] is achieved. However, this results in a significant decrease in execution
speed. It also has the further disadvantage of focusing the programmer's attention on hardwar
details at the expense of further refinements in system abstractions.

Compact Code. The generated code for the StarLite architecture is extremely space
efficient since it is based on the Lilith design. For example, the object code (.o file) sizes for a
sample 1,000 line program were SUN3-Modula2(130K), SUN3-C(65K), PC286-C(35K),
StarLite-Modula2(llK). Compact code has a significant effect on the speed with which the
environment can load both system components and user-level programs that might run on those

* components. Compactness also increases cache locality, reduces page faults, and maximizes the
quantity of software that can be co-resident in the prototyping system.

Exception Handling. The benefits of exception handling support for large system
development have already been documented by Rovner[4].

Error Detection. The beneits of integrity checking for an architecture's primitive
operations have been discussed by Wirth[51. The StarLite architecture supports checks for
overflow/underflow, division by zero, subrange and subscript checking, NIL pointer checks,
illegal addresses, and stack overflow. Subrange and subscript checks are generated by the
compiler. The other faults should be detected by the underlying C runtime. If not, we use the C
compiler's "-a" option and then modify the assembler output with an editing script.

Demand Loading. The StarLite architecture supports demand loading; that is, modules are
loaded at the point that one of their procedures is called. Thus, a large software system begins
execution very quickly and then loads only the modules that are actually referenced. For
example, one version of the operating system defers loading the file system, or even the disk

• driver, until a file operation is performed.

Achieving this requirement was complicated by the format of module initialization code. In
Modula-2, the initialization procedures for all imported modules must be invoked prior to
executing the initialization code for the importing module. Without some care in the architecture
definition, all modules would be demand loaded as soon as a program module began execution,
which would negate the benefits. The solution is described in Section 3.1.4.

At the current time, a linker is superfluous; aa soon as a module is compiled, it may be
executed. Demand loading and the absence of linking grcatly enhances the efficacy of the
StarLite debug cycle. The only limit on debugging is how fast the programmer can discover bugs
and type in the changes.

Dynamic Restart. When dcbuin IT software, it can be annoying to discover an error,
return to the host level, compile, and then run the system to the point of error only to discover
another silly mistake. The StarLite architecture is designed so that an IMPLEMENTATION
module can be compiled in a child process while the interpreter is suspended. That module can
be reinserted into memory and the system restarted.

Another dynamic restart feature supports the emulation of partial failure as might be
experienced in a distributed system. The Modula-2 compiler does not attempt to statically
initialize any data arca. Thus, any module, or set of modules, can be dynamically restarted at any
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time without reloading the object modules from disk. For a distributed system, the user can
induce virtual processor failures and then "bring up" the operating system on those nodes without

ll loading any software from disk.

Fast Context Switches. Unlike the "high-speed" requirement, achieving a fast context
switch time can be realized independent of the characteristics of the host machine. For example,
there are no context switches within the interpreter, which is basically a C procedure in a closed
loop. Therefore, a host architecture with a slow context switch time has no effect on the

to •interpreter's context switch time; it is only a function of the state information that must be saved
and restored. This is an important requirement as a typical operating system "run" can involve
thousands of context switches.

The StarLite architecture specifies only a single register (P) per thread. The additional state
information (described later) is located in the thread's stack. Whether or not the additional state
information is implemented as registers or is left on the stack is an implementation decision. For
example, a machine with a well-matched caching strategy could support an implementation that
left the state on the stack and used P as a base register. The result would be a context switch that
involved only changing P registers. On the other hand, if the state information were copied into
C register variables to improve performance, a context switch would involve register save/restore
operations. Each implementation of the architecture must be balanced to match the
characteristics of the host machine. The current SUN 3/280 interpreter executes 200,000coroutine transfers/second. On the other hand, the IBM PS2/50 interpreter executes at 10,000

transfers/second.

Hybrid Execution Modes. In a prototyping environment, it is advantageous to use
services that already exist in the host environment. For example, it is possible to "mount" the

* host file system on a leaf of a prototyped file system, or even as the prototype's "root" file system.
Another example would be to use the host's database services.

Yet another example occurs in situations where the prototype would execute partially in the
host and partially in a target system. An illustration of this case would be the use of a physical
disk server by an operating system running in the host prototyping environment.

* The keys to hybrid execution are architectural support and the definition of interfaces that
*remain invariant to changes in implementation tecthnology. For example, the following interface

is used in the operating system.

PROCEDURE Load(VAR programName• ARRAY OF CHAR):BOOLEAN;

* It is used by the "exec" system call to load user programs into memory. The interface "hides"
implementation details such as the existence of a prototype file system or the virtual memory
architecture. This "information hiding" principle is also used in designing device interfaces. As
a result, the operating system never knows whether devices, such as disks, or services, such as
"Load", are real or are emulated.

A, In the case of "Load", for example, it is included in the architecture's collection of VM
ROM routines. If the user does not supply a "Loader" module, the one in VM ROM will be used
instead. A VM ROM routine has a DEFINITION module but its implementation is part of the
interpreter. VM ROM can be used to provide functionality that the prototype software does not.
For example, when prototyping an operating system to experiment with tile system issues, it is
not necessary to worry about program management; VM ROM routines can be used to take care

4 of the details.
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It is easy to add additional packages to the VM ROM interface. The disadvantage is that all
ROM packages, which are written in C by the way, must be co-resident with the interpreter. In a

* future version of StarLite under IBM's OS/2, all of the ROM packages will be dynamically
linked on demand.

Portability. One of the benefits of developing systems in the StarLite environment is that
the code can be shared with other researchers. To facilitate sharing at the object code level, the
instructions generated by the compiler and its object module format are canonical. That is, the
byte ordering is fixed, as is the character code (ASCII), and the floating point format (IEEE). If
the host has different conventions, the compiler performs the conversions as it generates code.
To the extent that an implementation module is machine invariant, it should be possible to
transmit object modules from one site to another and to have them work.

The StarLite operating system design project is experimenting with the use of "safe"[41,
canonical object modules for user-specified line and protocol filters, schedulers, and application-
specific file systems. Frut example, the operating system stores method descriptions for file access
in the canonical object code format. The advantage of a canonical representation is that the
volume can be transported to a different machine, which could then interpret the access method to
manipulate the volume.

3. The StarLite Architecture

The StarLite architecture extends the Lilith design to satisfy the requirements for
prototyping. It supports the INTEGER, CARDINAL, LONGINT, REAL, PROCEDURE, and
BITSET types and includes modifications to the coroutine structure. This section first describes
the components of a coroutine, which is the fundamental building block for emulating various

*• processor configurations. Secondly, Lhe instruction set architecture is explained. Following
Wirth[ I], the definitions are in Modula-2.

3.1 The coroutine structure

A coroutine, or thread, in the StarLite architecture consists of state information, code,
global data, and a stack. Coincidentally, this is the model supported by most implementations of

* UNIX. A coroutine is defined as follows:

TYPE
Coroutine

xState : ExecutionState; (* where execution is/was *)
interruptMask: BITSET; (* I is enabled *)
interruptVectorPointer : ptnterrupt;

* topOlStackPointer, stackLimitPointer : pSiack:
dataFrameTablePointer : pDataFrameTable; (* one base register/module to locate global data *)
modulelnfoTablcPointer : pModulelnfoTable: (* describes loaded modules *)
evendnfo: EvcntDescription; (* reason for the latest internal/external trap )
bottomFrame : Frame; ( describes the base of the procedure activation record stack *)

END; (" Coroutine )

* Stack = ARRAY [O..MAXSTACKI OF WORD; (* generic area in a coroutine's stack *)
pStack = POINTER TO Stack;

The coroutine structure is dcsigned for fast context switching. A context switch can be
accomplished by exchanging two coroutine pointers. Unfortunately, leaving all the state
information in a coroutine's stack can signilicantly slow execution on some architectures.

* Therefore, some experimentation is necessary each time the interpreter is ported to determine a
good balance between context-switch time (all registers in the coroutine record) and execution
spced (some/all registers in C register variables).

* -30-
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The standard portion (relative to most other architectures) of the state information in the
coroutine record contains the current instruction position (xState), top-of-stack and stack limit

* pointers, an interrupt mask, and a "bottom" frame that "marks" the base of the procedure
activation record stack.

The non-standard components of the coroutine record are the event descriptor (eventlnfo)
and the pointers to the interrupt vector, data frame and module information tables.

3.1.1 The interrupt vector

By using an interrupt vector pointer, all coroutines can share the same trap/interrupt vector
or the coroutines can be partitioned to use different vectors. As a result, it is possible to emulate
a multiprocessor or distributed processor architecture by changing the InitCoroutine procedure.
This can be accomplished without modifying the interpreter. It also means that the interpreter is
unaware and unaffected by the number of virtual processors that higher-level software creates.

• The interrupt vector, which also handles exceptions, is implemented as an array of pointers
to coroutines. An interrupt, then, is just a Modula-2 "transfer" operation on two coroutines, the
one executing and the one identified by the appropriate vector entry. At the present time, entry
zero is for the system clock interrupt and entry one is for program faults. Other interrupt options
that we considered (but rejected) were procedure variables and semaphores. Both choices had
disadvantages that the use of coroutines avoided.

With respect to exceptions and interrupts, there is a somewhat symbiotic relationship
between the interpreter and the operating systems that live on top of it. For example, a procedure
return from the "bottom" frame raises the "normal exit" exception.

If the interrupt vector entry for this exception is NIL, the interpreter terminates the "booted"
program. In a bare machine, there is nothing "underneath" so a NIL vector location induces a

* machine fault. However, the StarLite VM is not "bare" so it implements reasonable actions for
what would otherwise be unrecoverable errors in hardware. At the VM level above the
interpreter, the prototype operating system handles the "normal exit" exception by executing an
"Exit(O)" system call on behalf of the process.

TYPE
*ID Interrupt = ARRAY 0I..MAXLNTS] OF pCoroutine; (* Trap/interrupt vector *)

pInterrupt = POINTER TO Interrupt; (* part of state information *)

EventDescription = RECORD (* records why a process is handling an exception/event *)
eventCode : CARDINAL; (* Possible values - normal, halted, caseerr, stackovf, heapovf, functionerr,

addresserr, realovf, realunf, badoperand, cardnalovf, integerovf, rangeer,
dividebyzcro, illegalinst, breakpnt, singlestcp, missingmod *)

evcntString: ARRAY [0..MAXMSG] OF CHAR;
* END; (* EventDescription *)

3.1.2 Event processing

The "eventilnfo" field in the StarLite coroutine record provides integrated support for
exception handling in the architecture. Other Modula-2 systems[4] have modified the language to
support exception handling; we provide similar functionality, but not the syntax, via an Exception
module implemented in Modula-2. We use the terms "catch" to refer to the establishment of a
handler and "raise" to refer to the action when an exception is detected. The modifications to the
Lilith architecture involved adding an exception handler pointer cell to each activation record,
adding a RESTORE instruction to restore the context for a handler, and adding the event fields to
the coroutine record.
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The StarLite architecture is somewhat unique in its handling of exceptions. or events at the
architectural level. First, an exception may be raised in three ways. It may occur through

* program execution, such as for division-by-zero, through the execution of the Exception.Raise
procedure, or through the intervention of another coroutine. The first two methods are traditional;
the latter is not.

There are two reasons for providing support in the architecture for inter-coroutine
exceptions. First, some exceptions, such as stack overflow, may not be appropriate for the
executing coroutine to "catch". If it has corrupted its stack, it may not continue execution safely.
Every coroutine has a "more trustworthy" coroutine to "catch" its exceptions. The "most
trustworthy" catcher is the interpreter, which intervenes for NIL vector entries.

The second reason is that inter-coroutine exceptions are a good way to "back" a coroutine
out of a module hierarchy where it holds locks or other resources. For instance, the operating
system's "kill" implementation could use this technique by sending a "kill" exception to an

* operating system thread executing a system call on behalf of a user. When the thread "catches'
the exception, it must exit each module that it was executing and release any allocated resources.

The problem with inter-coroutine exceptions is what to do when multiple coroutines
perform a "raise" operation on the same victim. In the StarLite architecture, when the eventCode
is set to non-zero, an exception is raised atomically with respect to any other exception for a
ggiven coroutine. When a handler sets the cell back to zero, the atomic action has completed and

* other exceptions can be raised. If a coroutine generates or attempts to raise an exception while in
this mode, it is killed. The rationale is that the handler is supposed to be "more trusted"; if it
fails, the program is in trouble.

*, The eventString field was introduced to reduce the need for a plethora of routines to invert
error codes to sensible messages. It is intended to be used for the error message that matches the
eventCode; however, the field can also be used for path names of error message files or for data.

3.1.3 Module storage
The StarLite architecture, which is based on Wirth's Lilith architecture, is designed to

manage the storage for modules. The prototyping environment is designed to support debugging
modules of code. Data storage is not yet an issue since we assume that the host workstation's

. virtual, if not physical, memory is sufficient to store a system while it is being prototyped.

The data frame table (DFT) is the focal point of all inter-module addressing, both for data
and code. The DFT is indexed by module number. All variables and procedures external to a
module are addressed via a module-number/offset pair. For variables, the offset is the data
address. For procedures, the offset is the procedure number within its module. Loading a
module, then, involves placing its code and data in memory and replacing the references to
external module numbers with their DFT indices.

The data frame table (DFT) has one entry for every linked module. As with interrupt
vectors, there can be as many DFTs as needed to emulate multiprocessor or distributed
architectures. Each DFT entry contains either the pointer to the data structure for a loaded
module, a marker that indicates a linked, but not loaded, module, a marker that indicates an

4 'unused entry, or an "extraCode" marker.
The "extraCode" marker identities a routine, such as InOut, that is stored in VM ROM.

References to an "cxtraCodc" module are intercepted by the interpreter and are directed to C
routines. The ROM feature supports the creation of prototypes that execute in hybrid mode.
some parts are in VM and some parts are in VM ROM. Any function available to a C program on
the host operating system is available by the use of the VM ROM technique.
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The following definition describes the storage structure for a loaded module. Each DFT
entry contains the base address of the global data area for a module. As mentioned earlier, the

*O  only static data generated by the compiler are string constants, which are located by a pointer
cell. The initialization flag is set by a test-and-set instruction when a module's initialization code
is executed. The setting of the flag indicates that the initialization code is being executed. To
dynamically restart a module, it is only necessary to reset this flag and the module will repeat its
initialization sequence. The code pointer locates the code vector associated with a module. The
code vector contains a vector of offsets to the code bytes for each of a module's procedures,

* followed by the code bytes.

TYPE
pDataFza.meTable = POINTER TO DataFrameTable; (* part of the state information *)

DataFrarneTable = ARRAY [0..MAXMODS] OF pModule; (* identifies the code/data for loaded modules *)

pModule = POINTER TO Module;
* Module = RECORD

codcPointer: pCode; (* locates the code for a module *)
initializedFlag: LONGINT; (* set to non-zero when module initialization begins *)

stringPointer: pStringArea; (* pointer to the static data area where string constants are stored *)
globalData: ARRAY [O..MAXGLOBALS] OF WORD; (* global data (includes string constants) *)

END; (* Module *)

pStringArea POINTER TO StringArea;
StringArea = ARRAY [O..MAXPROGRAMSTRINGS] OF CHAR; (* constants generated by compiler *)

pCode = POINTER TO Code;
TwoViews = (OffsetView, CodeByteView);
Code = RECORD

*0 CASE :TwoViews OF
OffsetView:
codcOffsets: ARRAY [0..MAXPROCS] OF CARDINAL; (* offsets to the code for each procedure *)

codcBytes: ARRAY [0..MAXCODEBYTES] OF Opcodes; (* instructions for a module's procedures *)
END; (* case 4)

END; (* Code *)

pModulelnfoTable POINTER TO ModulelnfoTable;
ModulcInfoTable = RECORD (* identifies all referenced modules *)

name: ARRAY (0..MAXNAME] OF CHAR; (* the module's name *)
key : ARRAY [O..MAXKEY] OF CARDINAL; (* timestamp of the corresponding DEFINITION part 4)

modNo: [0..MAXMODS]; (* identifies the DFT entry assigned to the module 4)

codeSize : CARDINAL; the size of Code *)
dataSize: LONGINT; (l (ie size of Module *)

END; (* ModulelnfoTable *)

The module information table (MIT) is defined as part of the architecture in an effort to
keep the debugger's code independent of the structure of the software being prototyped. The
table is also used by the routine that implements demand loading. As described earlier, if the
vector entry for the "missingmod" exception is NIL, the interpreter invokes an extracode routine
to load the module with a "name" and "key" that matches the module referenced by the
instruction. The module number from the instruction can be inverted to an MIT entry by a linear
search.

3.1.4 Procedure activation records
4 There are four classes of procedure activation records: coroutine start, local call, inter-

module call, and dynamic initialization call. Coroutine-start is used as a marker for the bottom
a'

-a
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frame when IniiCoroutine creates a coroutine. The local-call case contains the standard static and
dynamic links and a saved PC value. For an inter-module call, the module number of the caller is

* saved. When a procedure return occurs, the G value is sufficient to retrieve the base addresses of
both the global data area and the code vector.

Finally, the dynamic-initialization case, which is new to StarLite, is used for demand
loading. The initialization code for each module contains a call to the initialization procedure (0)
for every imported module. For demand loading to work, these calls are treated as NOPs.
Otherwise, aU modules would be loaded as soon as the program module executed its initialization
code.

As a result, when an external variable or procedure (other than zero) is referenced and the
DFT entry is marked as loadable, the module must be loaded and initialized. The initialization is
initiated by "faking" a procedure call at the point of reference. The dynamic-initialization marker
indicates this special case. Also, since the "missingmod" exception leaves the PC at the

* instruction that generated the fault, it will be restarted when the initialization completes.

TYPE
Frame = RECORD (S format for a procedure's activation record *)

xState: ExecutionState; (* where execution was *)

handler: ADDRESS; (S address of the exception handler for this frame*)
localData: Stack; (* space for a procedure's local variables *)

END; (* Frame *)

StateViews = (CoroutineStart, InterModuleCall, Dynamiclnitialization, LocalCall);

ExccutionState = RECORD (* used to start/restart execution and to return from a procedure *)
CASE :StateViews OF
CoroutineStart:

LnterModulcCall. Dynamictnitialization:
G : [0..MAXMODS+256]; (5 number of calling module; G&100 => dynamic initialization *)
I

LocalCall:
staticLink : POINTER TO Frame; (* L register (statically) of the calling procedure *)

END; (* case *)
L: POLNTER TO Frame; (* back link to the frame for the caller; dynamic link *)
PC: CARDINAL; (* PC=FFFF => the bottom frame; PC&8000 => marks an intermodule call 5)

END; (* ExecutionState *)

4. The Instruction Set Architecture

In this section, we outline the StarLite extensions to the Lilith architecture. For those
interested in more detail, Appendix A presents a system consisting of two modules, together with
a decoding of the object module for each. Furthermore, there is a memory snapshot that
illustrates the "main" coroutine's data structures. The snapshot shows the program state at load
time, during dynamic initialization following a demand load, and during a nested procedure call.

The instruction format of the StarLite architecture is identical to that of the Lilith and is
illustrated in Figure 1. ES refers to the evaluation stack, which for StarLite is just the top of
stack. F refers to the base of a module's code vector. Figure 2 lists the op code and function of
each instruction.

As mentioned previously, StarLite is a pure ,ack architecture, while the Lilith is not. Thus,
instructions were added to handle argument pa.sing and procedure return. For example. a
return-and-pop-arguments instruction was delined. For portability, we added instructions to load

a each constant type. As a result, differences in byte ordering or representation can be handled by
the interpreter v hile leaving the compiler free to deline a canonical object format.
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<-8 Bits -

JOPCODE]

JOP IA

OPCODE B

IOPCODE ICJ

IOPCODE M N

OPCODE IDI

MODE EFFECTIVE OPERAND

Stack : (ES++), operands are on the evaluation stack
Immediate: A(-l..15), B(O..255), C(16 bits), D(32 bits)

* Procedure Local :((L)+A) or ((L)+B)
Module Global : ((G)+A) or ((G)+B)
External Module ((ModuleFrameTable[MI)+N)
Indirect : ((ES++))
Indexed with NIL check : ((ES+t)-iA) or ((ES+-i)+B)
Aligned Index with check : ((ES++)*ElementSize + (ES++))
String constant: (((G)+2)+B)
PC Relative.: (F)+(PC)+B or (F)+(?PC)+C

Figure 1. The StarLite Op Code Format and Addressing Modes



0 40 100 140 200 240 300 340

*0 LIO LLW LGW LSWO LSW REST FORI MOV
I LIi LLD LGD LSW1 LSD ILL FOR-2 CMP
2 L12 LEW LGW2 LSW2 LSDO DNEG ENTC ILL
3 L13 LED LGW3 LSW3 ILL DMOD EXC ILL
4 L14 LLWO LGW4 LSW4 LSTA DABS TRAP ILL

*5 L15 LLWI LGW5 LSW5 LXB UCHK Cl-IK ILL
6 L16 LLW2 LGW6 LSW6 L-XW ROT CI-IZ ILL
7 L17 LLW3 LGW7 LSW7 LXD SYS CHKS ILL

10 L18 LLW4 LGW8 LSW8 DADD ILL EQL GB
*11 L19 LLW5 LGW9 LSW9 DSUB ILL NEQ G1

12 LIlO LLW6 LGW1O LSWIO DMUL ULSS LSS ALOC
13 LIIi LLW7 LGWIL1 LSWI1I DDIV ULEQ LEQ ENTR
14 L112 LLW8 LGW12 LSW12 CDBL UGTR GTR RTN
15 L113 LLW9 LGW13 LSW13 DCMP UGEQ GEQ CX
16 L114 LLW10 LGW14 LSW14 ILL ILL ABS CI
17 L115 LLWI1 LGW15 LSW15 ILL ILL NEG CF

20 LIB SLW SGW SSWO SSW SPW OR CL
21 LIR SLD SGD SSW1 SSD SPD XOR CLi

* 22 LIW SEW SGW2 SSW2 SSDO RTNS AND CL2
23 LID SED SGW N3 SSW3 ILL LSSA COM CL3
24 LLA SLWO SGW4 SSW4 TS LSSAC IN CL4
25 LGA SLWI SGW5 SSW5 SXB COPD LIN CL5
26 LSA SLW2 SGW6 SSW6 SXW DECS ILL CL6

6e 27 LEA SLW3 SGW7 SSW7 SXD PCOP NOT CL7

30 JPC SLW4 SGW8 SSW8 FADD UADD ADD CL8
31 JP SLW5 SGW9 SSW9 FSUB USUB SUB CL9
32 JPFC SLW6 SGW10 SSW10 FMUL UMUL MUL CLIO
33 ILL SLW7 SGWI1 SSWII FDIV UDIV DIV CLI 1
34 JPBC SLW8 SGWI2 SSWI2 FCMP UMOV) ILL CL12
35 JPB SLW9 SGWl3 SSW13 FABS ILL BIT CL13
36 ORJP SLW1O SGWI4 SSW14 FNECQ SHL NOP CL14
37 ANDJP SLWI1 SG'vV5 SSW15 FFCT SHR ILL CL15

Fig'Ure 2a. Op Code Table
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Figure 2b. Op Code Definitions

Op Format Traps Operation

46ADD SUB MUL DIV NEG ABS INTEGER
stku, iovf, idivz > (popl6), >, < (pushl6), + -*DIV u- ABS

DADD DSUB DMIUL DDIV DNEG DMOD DABS LONGINT
stku, dovf, ddivz >>, >>, << (push32), + - * DIV u- MOD ABS

DCMIvP stku if>>r >>then«<, = 00,lissO0I, gtr1o
EQL NEQ LSS LEQ GTR GEQ INTEGER

stku if >r >then < I else< 0
FADD FSUB FMUL FDIV FNEG FABS REAL

stku, fovf, funf, fdivz >>, >>, <<, + u-ABS
FCMIP stku if>>r >>then <, =00,lIss0 1, gtr 10
FFCT byte stku, siko, fsig b=0 FLOAT(LONGINT) b1I TRUNC(LONGINT)

b=2 TRUNC(REAL) b=3 LONG INT(CARDINAL)
* b=4 FLOAT(CARDINAL)

OR XOR AND COM stku BITS ET, >, >, I xor &
UADD USUB UMUL UDIV UMIOD CARDINAL

stku, covf, cdivz >, >, <, + - * DIV MOD
ULSS ULEQ UGTR UGEQ CARDINAL

stku if >r >then < 1 else< 0
ALOC ca-rd,byte stko inc stack by c words; (L+wrdOffst b+frameSz):=adr
ANDIP byte stku if > # 0 then PC += 1 else < 0; PC += b
BIT stku, covf >i, < 2**i
CDBL stku, Stko convert top of stack from INTEGER to LONGINT
CF byte stko, missm, ilcall like CX; the 16-bit mn,pn is b+lI words below S
CHK stku, subrange >b, >a, >i, if (i Iss a) or (i gtr b) then err else <i

6CLIKS stku, sien >i, if i less 0 then err else <ci
CHKZ stku, subrange >b, >i, if i > b then err else <i
Cl byte-pn stko, ilcall call local-proc b; like CL but uses >> as static link
CL byte-pn stko, ilcall call local-proc b; L,S=new frame; handler=-NIL;

staticL=oldL; L=oldL; PC=return offset in Code
CLi stko, ilcall call local-proc i; L,S=new frame; handler--NIL;

* staticL=oldL, L=oldL; PC=return offset in Code
CMlP stku, iladr >i,> s,> d, cmp i words of (d) and (s) =<1 #<eQ
COPD stku, stko >>i, <<i, <<i
CX mn(S),pn(8) stko, missm, ilcall call ext m, proc p; saves G for caller;, checks xCode
DECS stku>
ENTC card stku, case >cs, PC += c, next 2 wrds are lo,hi limit on all cases

if (cs ge Io)&(cs le hi) PC += then (cs-lo+i3)*2 else 4
PC += INTEGER(next 2 words)

ENTR byte stko inc stack by b words for local variables
EXC stku, iladr >byte offset, PC =F + b
FOR I bytc,card stku, iladr >limit, >initial value, >variableAdr

if (b=0) and (mnit lcq lim ) or (b=l1) and (mnit gcq lim)
(vadr):=init; <<vadr; <uirn

else PC += C
FOR2 stcp-.sbmiit stku, iladr, ioyvf >lirnit, >variableAdr

if (sb gcq 0) and (*vadr+sb lcq lrn) or
(sb Iss 0) and (*vadr+sb gcq lim) then

*vadr += sb;, PC += int; <<vadr; <lim
else fall through the loop

GB byte Stko, iladr << the Static link b levels back, L if b=0
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Op Format Traps Operation

GBI stko, iladr << L.staticLink
* ILL ilinst illegal op code

IN stku, covf >bs, >in, if bs & > 2**in then < I else < 0
JP integer PC += i
JPB byte PC -= b
JPBC byte stku if > =0 then PC -= b else PC += 1
JP(F)C byte/card stku if > =0 then PC += b/c else PC += 1/2
LEA byte-m,byte stko. missm, iladr << dft[m] + 8-bit word offset
L(S)ED byte-m,byte stku, stko, missm,iladr << / >> (dft[m] + 8-bit word offset)
L(S)EW byte-m,byte stku, stko, missm,iladr </ > (dft[m] + 8-bit word offset)
LIB byte stko < zero-extended byte
LID longint stko << LONGINT
LIi stko < zero-extended i
LIN stko < -1
LIR real stko << REAL
LIW l6bits stko < 16 bits
LGA byte stko << G + 8-bit word offset
L(S)GD byte stko, stku << / >> (G + 8-bit word offset)
L(S)GW byte stko, stku < / > (G + 8-bit word offset)
L(S)GWi stko, stku < /> (G + word offset i)
LLA byte stko << L + 8-bit word offset + frame size
L(S)LD byte stko, stku << / >> (L + 8-bit word offset + frame size)
LSA byte stku, stko, iladr >>adr, < adr + 8-bit word offset
L(S)SD byte stku, stko, iladr >>adr, << / >> (adr + 8-bit word offset)
L(S)SD0 stku, stko, iladr >>adr, << / >> (adr)
LSSA stku, iladr >word offset, >> adr, << adr + w
LSSAC byte stku, iladr >word offsetj; (S - b-2 words) +=j
LSTA byte stko, iladr << G.stringPointer + 8-bit word offset
L(S)LW byte stko, stku < / > (L + 8-bit word offset + frame size)
L(S)LWi stko, stku < / > (L + word offset i + frame size)
L(S)SWi stku, iladr >>adr, < / > (adr + word offset i)
L(S)W byte stku, iladr >>adr, < / > (adr + 8-bit word offset)
L(S)XB stku, iladr >i, >>adr, < (adr + byte offset i)
L(S)XD stku, iladr >i, >>adr, < (adr + doubleword offset i)
L(S)X\V stku, iladr >i, >>adr, < (adr + word offset i)
MOV stku, iladr >i, >>s, >>d, move i words of (s) to (d)
NOP no operation
NOT stku if>=O then< I else<0
ORJP byte stku if< = 0 then PC += I else> 1; PC += b
REST stku, iladr >> frame adr; restore control to its event handler
ROT byte stku b= I, >b >a <b; b=2, >c >b >a <b <c
RTN coend, iladr proc return; restore the caller's frame
RTNS byte iladr >argLstSize; b=wordslnResult; pop args; copy result
SHL stku, covf >i, >c; < c * 2**i
SHR stku, covf >i, >c; < c div 2**i
SPD bytebyte 32(L + wrd off bI + frame size) (L - wrd offst b2)
SPW byte,byte 16(L + wrd off bI + frame size) (L - wrd offst b2)
SYS reserved for system functions
TRAP stku, i >i: generate trap i
TS stku, iladr >>ic; << (ic); (ic)=1
UCI{K stku, subrange >hi, >lo, >a, if (a<lo) or (a>hi) then err else <a
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Other extensions involved changing from 16-bit to 32-bit addressing, adding an exception-
handling instruction, creating additional arithmetic operators for the LONGINT and REAL types,
and redefining offset-based addressing.

In the Lilith, there are special instructions to manipulate local variables. For instance,
LLW6 loads the word at an offset of six from the L register. The problem with this definition is
that the frame size may vary from one machine to another, or it may vary because of
requirements dictated by a prototype operating system. In any case, any variation requires
changing the compiler, which results in a loss of portability. The StarLite solution was to define
all offsets as being relative to the first variable location that could be referenced. Thus, the
interpreter adds the size of the control information to the supplied offset. This change affected
the instructions that manipulated local, global, and eytemal variables.

The deletions from the instruction set included instructions that dealt with the coroutine
structure, interrupts, priority, or the DFT. In essence, the instruction set is independent of its
execution environment since it is defined only in terms of its logical relationship to the
components of a Modula-2 program. The underlying architecture is manipulated by using
procedures that are exported from an extracode module. The opcode space that is made available
by these changes is used to encode extensions, such as the LONGREAL type.

5. Summary
The StarLite system has been operational for a year. It is being used to develop operating

systems, distributed database systems, and new network protocols. The architecture has been the1"glue" that has enabled the other pieces of the environment to be put together in a way that
maximizes a researcher's productivity.

While the initial version of the environment executes as a single UNIX process, future
versions could take excellent advantage of both load balancing to distribute a running prototype
across a number of machines and of multiprocessor support, such as is found in Mach or Taos.

We gratefully acknowledge the inspiration provided by the Lilith, which may have a longer
life as a virtual machine than it ever had as a physical one.
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MODULE main key DEA8 7 15
data size IA bytes code size 34 bytes

IMPORT x key D6D8 2 15
*IMPORT InOut key 9344 3AC AE73

GLOBAL DATA
C : i n\ba \ \O

01: MODULE main, 12: i n\b m ai n \D \
02: IMPORT x, InOut; CODE

00: 4 offset to module initializationo02: 10 offset to procedure 'a'
03: PROCEDURE ao; 04: LGA initializedFlag; TS; JPFC A; RTN
04: VAR r:INTEGER; OA: LGA StringArea; JP 21; NOP
05: BEGIN_______________ ____

06: lnOut.WriteString("in a"); 10: ENTR I (*procedure a' *)
07: InOut.WriteL-no; 112: LSTA 0; L13; CX 2 C; CX 2 B

*08: r= x.p(3);, IB: L13;, CX I 1; SLWO; RTN
09: END a;

21: SGD stringPointer
10: BEGIN 23: CX 1 0 (* it mod I1(x); call proc 0 *
11: InOULWriteString("in main"); 26: CX 2 0 (* it module 2 (InOut) *
12: InOuLWritel-no, 29: LSTA 3; L16; CX 2 C; CX 2 B
13: ao; 32: CLI; RTN
14: END main. FIXUP offsets 16 19 ID 24 27 2D 30

MODULE x key D6D8 2 15
01: MODULE x; data size lE bytes code size 4C bytes
02: IMPORT InOut; IMPORT InOut key 9344 3AC A.E73

GLOBAL DATA
C: i n\b b\0 \O

03: PROCEDURE p(i:INTEGER): INTEGER; 12: i n \b p \I) \t)
04: VAR t:INTEGER; 18: i n \b x \0) \O
05: PROCEDURE bo:INTEGER; CODE
06: VAR s:INTEGER; 00: 6 offset to module initialization

*07: BEGIN 02: 26 offset to procedure 'p'
08: InOut.WriteString("in b"); 04: 12 offset to procedure Vb
09: InOut.WriteLno; 06: LGA initializedFlag; TS; JPEC C; RTN
10: HALT; OC: LGA StringArea; JP 3C; NOP
11: RETURN 3;___________ _____

12: END b; 12: ENTR 1 (*procedure 'b' *
13: BEGIN 14: LSTA 0; L13; CX 1 C; CX I B

14: InOut.WriteString("in p"); I D: 1-11; TRAP; L13; 1-O: RTNS 1: L15-, TRAP; NOP

15: InOut.WriteL-nQ; 26: ENTR 2; SPW 6 1 (* procedure 'p *)
16: RETURN bo*i; 2B: LSTA 3; L13; CX 1 C; CX B
17: END p; 134: CL-2; LLW6; MIUL: LII; RTNS 1: L15: TRAP

18: BEGIN 3C: SGD stringPointer
19: InOut.\VrireString("in x"), 3E: CX 1 0 (* mnit module I (InOut) *
20: lnOut.WriieLnO; 41: LSTA 6; L13; CX I C; CX I B
21: END x. 4A: RTN

FIXUP offsets 18 l B 2F 323F 4548

Appendix A. An Example Program and Its Object Modules
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CUi 0<i<l16, Call Local proccdure number
CX NI N O<=M,N<=255, Call eXternal module M, procedure number N
ENTR N 0<=N<=255, ENTeR procedure, reserves N words for local variables

C JP N -32768<~=N<=32767, Jump to PC+N bytes
JPFC N 0<=N<=255, Jump Forward Conditional N bytes only if the top of stack is zero
Lii 0<=i<=15, Load Immediate
LGA N 0<=N<=255, Load the Global Address at location Gi-N words
LSTA N 0<~=N<=255, Load STring Address at stringPointer+N words
NOP Null Operation
RTN ReTurN from a subroutine

*RTNS N 0<=N<=255, ReTurN and adjust stack, N=size of return value, top-of-stack=size of argument list
SL-Wj 0'<=i<=l 1, Store top of stack in Local Word
SGD N 0<=N<=255, Store in Global word N the Doubleword at the top of stack
TRAP generate the exception identified by the top of stack value
TS Test and Set on the address contained in the top of stack

Appendix AlI. An Explanation of the Example's Op Codes
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main coroutine -- > rG=1; L PC= 3E- virtual machine state

iMask =FFFF; intVecPnt module 'x' at line 18

I.SP SL
DFTPnt ModlnfoPnt

errCode = 0; errS tring -="
a- Fo 40L~ bottomFrame

handler = NIL
b > trcik=NL ;frame for procedure 'main. a'

PC =33; handler = NIL module 'main' at line 8
Variable 'r

L -> The argument to x.p 3 dnmciiilzto rm
I. L > ~~~~G = 100+0; L = b dnmciiilzto rm

PC= iC; handler=NIL for module 'x'
SP -

SL -

Data Frame Table Modules' Global Data Modules' Code

Module 'main' --- > codePointer for 'main' --- > 04
Module 'x' initializedFlag (1) 0010

10:ENTR proc 'ma-in.a'
*extraCodeMarker stringPointer - 12:LSTA

notPresentMarker global data area 14:L13

15:CX

IC:CX P

006Module Info Table L>r codePointer for 'x' ---> 0026
namc-= In ut

ke=94 3C~~3initializedFlag (1) 0012
ey=O= co06:LGAmodNo=2 codcSize=0 stringPointer08T

narnc='mnain' global data area I08:JPF
kcey=DEA8 7 15 9JF

modNo=0 codeSize= IA jOB:RTN
name='x' 0-nbb00inbPOf C:LGA

k-yD6D8 2 15 inb\\i~ 0On <-~ OE:JP
VodNo=1 codeSizc=4C 3:G -P~ t1

Appendix A2. Thc Coroutine State During Dynamnic Initialization
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main' coroutine -> rG=1; L PC E virtual machine state

iMask =FFFF; intVecPnt module ''at line 10

SP SL
DFTPnt ModlnfoPnt

a err = 1; String = "halted" otmre
a O* 0jedIC ~ ~ botmrm

* handler =NIL
b-> saticink NIL L~a frame for procedure 'main. a'

PC = 33; handler = NIL module 'main' at line 8
Variable 'r

*_ The arwument to x.t 3 frame for procedure 'x.p'
G =0; L=b PC =8000+1iF module 'x' at line 16

L> handler = NIL faefrpoeuexbstaticLink = c; L =cfaefoprcde'xb

SP> PC = 35; handler =NIL

SL ->

Data Frame Table Modules' Global Data Modules' Code

(M-odule 7main' > codePointer for 'main' --- > 0004

Module 'x' initializedFlag (1) 0010
extr~od~arer srin~oiter10:ENTR proc 'main.a'

* exra~de~rke strng~intr - 12:LSTA
notPresentMarker global data area 14:LI3

notPresentMarker ] 15:Cx

,i n\b a\0"Qi n\bm ai< IB:LI3
IC:CX p

Module Info Table "r codePointer for 'x' > 00.
namc='In ut 0026

kc=9443C~7 initializedFlag (1) 01

%modNo=2 codceSize=0 srnoit -12:ENTR proc 'x.b'
namc=' m ain' 1  tigon 14:LSTA

kcy=DEA8 7 15gobal data area 16:L13
modNo=0 codeSizc=1A 17:CX

namc='x' IA:CX
kcy=D6D8 2 15 inbb\0 \Oi n\b p\0 \Oirn<iIU

nodNo=1 codcSize=4C IE:TRAP <-PC (HALT)
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An Adaptive Checkpointing Scheme for Distributed Databases
with Mixed Types of Transactions

Sang Hyuk Son

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903

ABSTRACT studied by many researchers(l, 2. 3, 5. 6, 8, 9, 11, 15, 16].
Since checkpointing is performed during normal

Recent study shows the possibility of having a check- operation of the system, the interference with transaction pro-
pointing mechanism that does not interfere with the transac- cessing must be kept to a minimum. It is highly desirable that
tion processing, and yet achieves the global consistency of the users are allowed to submit transactions while the checkpoint.
checkpoints. Non-interfering checkpointing mechanisms, ing is in progress, and the transactions are executed in the
however, may suffer from the fact that the diverged computa- system concurrently with the checkpointing process. A quick
tion needs to be maintained by the system until all of the tran- recovery from failures is also desirable to many applications
sactions that are in progress when the checkpoint begins, of database systems. For achieving quick recovery, each
come to completion. For database systems with many long- checkpoint needs to be globally consistent so that a simple
lived transactions that need long execution time, this require- restoration of the latest checkpoint can bring the database to a
ment of maintaining diverged computation may make non- consistent state. In distributed database systems these desir-

• interfering checkpointing not practical. In this paper, we able properties of non-interference and global consistency
present a checkpointing algorithm that is non-interfering with make checkpointing complicated and increase the workload
transaction processing. It prevents the well-known "domino of the system.
effect", and saves intermediate results of the transaction in an Recently, the possibility of having 1 checkpointing
adaptive manner, managing effectively both short and long- mechanism that does not interfere with the transaction pro-
lived transactions in the system. cessing, and yet achieves the global consistency of the check-

points, has been studied [2, 5, 19]. The motivation of non-1. Introduction interfering checkpointing is to improve the system availabil-
The need for having recovery mechanisms in database ity, that is, the system must be able to execute user transac-

systems is well acknowledged. In spite of powerful database tions concurrently with the checkpointing process. The basic
integrity checking mechanisms which detect errors and principle behind non-interfering checkpointing mechanisms is
undesirable data, it is possible that some erroneous data may to create a diverged computation of the system such that the
be included in the database. Furthermore, even with a perfect checkpointing process can view a consistent state that could
integrity checking mechanism, failures of hardware and/or result by running to completion all of the transactions that are
software at the processing sites may destroy the consistency in progress when the checkpoint begins, instead of viewing a
of the database. In order to cope with those errors and consistent state that actually occurs by suspending further
failures, database systems provide recovery mechanisms, and transaction execution.
checkpointing is a technique frequently used in such recovery Non-interfering checkpointing mechanisms, however,
mechanisms. may suffer from the fact that the diverged computation needs

The goal of checkpointing in database management to be maintained by the system until all of the transactions
* systems is to save a consistent state of the d'abase on a that are in progress when the checkpoint begins, come to

separate secure device. In case of a failure, the stored data can completion. This may not be a major concern for a database
be used to restore the database to an earlier point in time. system in which all the transactions are relatively short, and

p Checkpointing must be performed so as to minimize both the hence can be executed in a short time period. However, for
costs of performing checkpoints and the costs of recovering database systems with many long-lived transactions that need
the database. If the checkpoint intervals are very small, too long execution time, a non-interfering checkpointing may not
much time and resources are spent in checkpointing; if these be practical because of the following reasons:
intervals are large, too much time is spent in recovery. Since (1) It takes a long time to complete one non-interfering
checkpointing is an effective method for maintaining con- checkpoint, resulting in a high storage and processing
sistency of database systems, it has been widely used and overhead.
_ _ _ _(2) If a crash occurs before reflecting the result of a long-

This work was partially supported by the Office of Naval lived transaction in the checkpoint, the system must
Research under contract no. N00014-86-K-0245, and by the let Pro- re-execute the transaction from the beginning, wasting

S"-pulsion Laboratory under oontract no. 957721 through Virginia InsU- all the resources used for the initial execution of the
* tute for Parallel Computation. transaction.
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222272In this paper, we present a checkpointing algorithm 2.2. Failure Assumptions

, which manages effectively both short and long-lived transac-a m i in many d
f.','.,ions in the database system. Our checkcpointig algorithm ferent ways and it is almost impossible to make an algorithm
' "operates in two different modes: global mode and local mode. which can tolerate all possible failures. In general, failures in

operation, the algorithm is non- distributed database systems can be classified as failures of
,.. interfering with transaction processing, and efficiently gen- omIssion or commission depending on whether some action.. ' .rates globally consistent checkpoints. In the local mode of required by the system specification was not taken or some

".'?ioperation, it prevents the well-known "domino effect". and action not specified was taken. The simplest failures of oras-
saves interm ediate results of the transaction. Furthermore, Sion are simple crashes in which a site simply stops running

only a minimal number of processes are involved in the when it fails. The hardest failures are malicious runs in which
checkpointing. This paper is organized as follows. Section 2 a site continues to run, but performs incorrect actions. Most
introduces a model of computation used in this paper. Section real failures lie between these two extremes.
3 describes the algorithm for non-interfering checkpoint crea-
tion. Section 4 raises problems associated with non- In this paper, we do not consider failures of commis-
interfering checkpoint creation, and presents an adaptive sion such as the "malicious runs" type of failure. When a site
checkpointing algorithm as a possible solution. Section 5 fails, it simply stops running (fail-stop). When the failed site

presents an informal proof of the correctness of the algorithm. recovers, the fact that it has failed is recognized, and a

Section 6 discusses the practicality and the robustness of the recovery procedure is initiated. We assume that site failures
algorithm, and describes the recovery methods associated are detectable by other sites. This can be achieved either by
with the algorithm. Section 7 concludes the paper. network protocols or by high-level time-out mechanisms in

the application layer. We also assume that network partition-

2. Model of Computation ing never occurs. This assumption is reasonable for most
local area networks and some long-haul networks.

2.1. Data Objects and Transactions 3. Non-Interfering Checkpoint Creation

A database consists of a set of data objects. Each data
* object has a value and represents the smallest unit of the data- 3.1. Motivation of Non-interference

base accessible to the user. All user requests for access to the
database are handled by the database system. We consider a The motivation of having a checkpointing scheme

distributed database system implemented on a computing sys- which does not interfere with transaction processing is well

tem where several autonomous computers (called sites) are explained in (2] by using the analogy of migrating birds and a
connected via a communication network. The set of data group of photographers. Suppose a group of photographers
objects in a distributed database system is partitioned among observe a sky filled with migrating birds. Because the scene is
its sites. A database is said to be consistent if the values of so vast that it cannot be captured by a single photograph, the

data objects satisfy a set of assertions. The assertions that photographers must take several snapshots and piece the
characterize the consistent states of the database are called the snapshots together to form a picture of the overall scene.

p consistency constraints [4). Furthermore, it is desirable that the photographers do not dis-
'Me b iturb the process that is being photographed. The snapshots
The basic units of user activity in database systems are cannot all be taken at precisely the same instance because of

.P transactions. Each transaction represents a complete and synchronization problems, and yet they should generate a
correct computation, i.e., if a transaction is executed alone on
an initially consistent database, it would terminate in a finite "meaningful" composite picture.
time and produce correct results, leaving the database con- In a distributed database system, each site saves the
sistent. A transaction is the unit of consistency and hence, it state of the data objec's stored at it to generate a local check-

must be atomic. By atomic, we mean that intermediate states point. We cannot ensure ",at the local checkpoints arc saved
of the database must not be visible outside the transaction, at the same instance, unless a global clock can be accessed by
and all updates of a transaction must be executed in an all- all the checkpointing processes. Moreover, we cannot guaran-
or-nothing fashion. A transaction is said to be committed tee that the global checkpoint, consisting of local checkpoints

when it is executed to completion, and it is said to be aborted saved, is consistent. Non-interfering checkpointing algo-
, when it is not executed at all. When a transaction is commit- rithms are very useful for the situations in which a quick

ted, the output values are finalized and made available to all recovery as well as no blocking of transactions is desirable.
subsequent transactions. We assume that the database system Instead of waiting for a consistent state to occur, the non-

runs a correct trantaction control mechanism (e.g., atomic interfering checkpointrng approach constructs a state that
commit algorithm(171 and concurrency control algo- would result by completing the transactions that are in pro-

rithm[ 181), and hence assures the atomicitv and the serializa- gress when the global checkpoint begins.

bility of transactions. In order to make each check-point globally consistent,

Each transaction has a time-stamp associated with it updates of a transaction must be either included in the check-

[101. A time-stamp is a number that is assigned to a transac- point completely or not at all. To achieve this, transactions

Lion when initiated and is kept by the transaction. Two impor- are divided into two groups according to their relations to the
tant properues of time-stamps are (I) no two transactions current checkpoint: after.checkpoint-transactions (ACPT)

have the same time-stamp. and (2) only a finite number of and before-checkpoint.transactions (BCPT). Updates belong-
transactions can have a time-stamp less than that of a given ing to BCP" are included in the current checkpoint while
transaction. those belonging to ACP" are not included. In a centralized
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1' database system. it is an easy task to separate transactions for and marks all the transactions at the site m with the
this purpose. However, it is not easy in a distributed environ- time-stamps not greater than LCPNm as BCPT.
ment. For the separation of transactions in a distributed (3) The coordinator broadcasts the GCPN which ii
environment, a special time-stamp which is globally agreed decied by:".'.'€decided by:
upon by the participating sites is used. This special time-
stamp is called the Global Checkpoint Number (GCPN), and CN=mxCP. n
it is determined as the maximum of the Local Checkpoint GCPN := max(LCPN.) n =
Numbers (LCPN) through the coordination of all the partici- (4) For all sites, after LCPN is fixed, all the transactions
paring sites. with the time-stamps greater than LCPN are marked

An ACIT can be reclassified as a BCUT if it turns outas temporary ACPT. If a temporary ACPT wants to
that Ath T t ansactionmut be e xed abe f t urenut update any data objects, those data objects are copied

c k that the transaction Th e from the database to the buffer space of the transac-checkpoint. This is called the conversion oftransactons. The tion. When a temporary ACPT commits, updated data
updates of a converted transaction are included in the current objects are not stored in the database as usual, but are
checkpoint. maintained as committed temporary versions (CTV)

-," of data objects. The data manager of each site main-
3.2. The Algorithm tains the permanent and temporary versions of data

There are two types of processes involved in the exe- objects. When a read request is made for a data object
cution of the algorithm: checkpoint coordinator (CC) and which has committed temporary versions. the value of
checkpoint subordinate (CS). The checkpoint coordinator the latest committed temporary version is returned.
starts and terminates the global checkpointing process. Once When a write request is made for a data object which
a checkpoint has started, the coordinator does not issue the has committed temporary versions, another committed
next checkpoint request until the first one has terminated, temporary version is created for it rather than,e.'."overwriting the previous committed temporary ver-

The variables used in the algorithm are as follows: sin g
, ,, .. sion.

.-.. (1) Local Clock (LT): a clock maintained at each site
which is manipulated by the clock rules of Lam- (5) When the GCPN is known, each checkinting pro

cess compares the time-stamps of the temporary
port[1 0]. ACPT with the GCPN. Transactions that satisfy the

(2) Local Checkpoint Number (LCPN): a number deter- following condition become BCPT; their updates are
mined locally for the current checkpoint. reflected into the database, and are included in the

(3) Global Checkpoint Number (GCPN): a globally current checkpoint.

unique number for the current checkpoint. LCPN < time-stamp(T)!5 GCPN

(4) CONVERT: a Boolean variable showing the comple-
tion of the conversion of all the eligible transactions at The remaining temporary ACPT are treated as actual
the site. ACPT; their updates are not included in the current

Our basic checkpointing algorithm, called CPI, works checkpoint. These updates are included in the data-
as follows: base after the current checkpointing has been com-

pleted. After the conversion of all the eligible BCPT,' '(1) The checkpoint coordinator broadcasts a CheckpointthcecoiinpresstsheBoanvibl
Reus MesgewthaLmesam .,.Te oa the checkpinting process sets the Boolean variable

•-Request Message with a time-stamp L-Ccc. The local CNETt ne

checkpoint number of the coordinator is set to LCcc,

and the coordinator sets the Boolean variable CON- CONVERT := true
VERT to false:

CONVERTec := false (6) Local checkpointing is executed by saving the state of
LCPNcc : LCcc data objects when there is no active BCPT and the

variable CONVERT is true.
All the transactions at the coordinator site with the (7) After the execution of local checkpointing, the values

* time-stamps not greater than LCPNcc are marked as of the latest committed temporary versions are used to
BCPT. replace the values of data objects in the actual data-

(2) On receiving a Checkpoint Request Message, the local base. Then, all committed temporary versions are
clock of site m is updated and LCPNm is determined deleted.
by the checkpoint subordinate as follows: The above checkpointing algorithm essentially con-

"" sists of two phases. The function of the first phase (steps I
LC. := max(LCcc + 1, LC,) through 3) is the assignment of GCPN that is determined

SLCPNm, := LC from the local clocks of the system. The second phase begins

by fixing the LCPN at each site. This is necessary because
The checkpoint subordinate of site m replies to the each LCPN sent to the checkpoint coordinator is a candidate
coordinator with LCPN., and sets the Boolean van- of the GCPN of the current checkpoint, and the committed
able CONVERT to false: temporary versions must be created for the data objects

updated by ACPT. The notions of committed temporary
CONVERTm := FALSE
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versions and conversion from ACPT to BCPT are introduced The threshold to separate two types of transactions is
to assure that each checkpoint contains all the updates made application-dependent. In general. transactions that need
by transactions with earlier time-stamps than the GCPN of hours of execution can be considered as long-lived transac-
the checkpoint. tions.

When a participant receives a Transaction Initiation The new checkpointing algorithm, called CP2.
Message from the coordinator, it checks whether or not the operates in two different modes: global mode and local mode.
transaction can be executed at this time. If the checkpointing The global mode operation of CP2 is basically the same as
process has already executed step 5 and time-stamp(T) 5 CPl, and it will efficiently generate consistent checkpoints in
GCPN, then a reject message is returned, and the transaction a non-interfering manner. In the local mode of operation, CP2
is aborted. Therefore in order to execute step 6. each check- provides a mechanism to save consistent states of a transac-
pointing process only needs to check active BCPT at its own tion so that the transaction can resume execution from its
site, and yet the consistency of the checkpoint can be most recent checkpoint.
achieved. As in the algorithm CP1, the checkpoint coordinator

begins the algorithm CP2 by sending out Checkpoint Request
3.3. Termination of the Algorithm Messages. Upon receiving this request message, each site

The algorithm described so far has no restriction on checks whether any long-lived transaction is being executed

the method of arranging the execution order of transactions. at the site. If yes, the site reports it to the coordinator, instead
With no restriction, however, it is possible that the algorithm of sending LCPN. Otherwise (i.e., no long-lived transaction
may never terminate. In order to ensure that the algorithm ter- in the system), CP2 continues the same procedure as CPl. If
inmates in a finite time, we must ensure that all BCPT ter- any site reports the existence of long-lived transaction, the
minate in a finite time, because local checkpointing in step 6 coordinator switches to the local mode of operation, and

can occur only when there is no active BCPT at the site. informs each site to operate in the local mode. The check-
point coordinator sends Checkpoint Request Messages to

Termination of transactions in a finite time is ensured each site at an appropriate time interval to initiate the next
if the concurrency control mechanism gives priority to older checkpoint in the global mode. This attempt will succeed if
transactions over younger transactions. With such a time- there is no active long-lived transactions in the system.
based priority, it is guaranteed that once a transaction T is
initiated, then T i is never blocked by subsequent transactions In the local mode of operation, each long-lived tran-
that are younger than Ti. The number of transactions that may saction is checkpointed separately from other long-lived tran-
block the execution of Tj is finite because only a finite sactions. The coordinator of the long-lived transaction ini-
number of transactions can be older than T i. Among older tiates the checkpoint by sending Checkpoint Request Mes-
transactions which may block Ti, there must be the oldest sages to its participants. A checkpoint at each site saves a
transaction which will terminate in a finite time, since no local state of a long-lived transaction. For satisfying the

*other transaction can block it. When it terminates, the second correctness requirement a set of checkpoints, one per each
oldest transaction can be executed, and then the third, and so participating site of a global long-lived transaction, should

on. Therefore, T i will be executed in a finite time. Since we reflect the consistent state of the transaction. Inconsistent set
have a finite number of BCPT when the checkpointing is ini- of checkpoints may result by non-synchronized execution of
tiated, all of them will terminate in a finite time, and hence associated checkpoint. For example, consider a long-lived
the checkpointing itself will terminate in a finite time. Con- transaction T being executed at sites P and Q, and a check-
currency control mechanisms based on time-stamp ordering point taken at site P at time X, and at site Q at time Y. If a
as in [ 181 can ensure the termination of transactions in a finite message M is sent from P after X, and received at Q before
time. Y, then the checkpoints would save the reception of M but

not the sending of M, resulting in a checkpoint representing

4. Adaptive Checkpoint Creation an inconsistent state of T.

In the previous section, we have shown that the algo- We use message numbers for achieving consistency in
rithm will terminate in a finite time by selecting appropriate a set of local checkpoints of a long-lived transaction. Mes-

concurrency control mechanisms. However, the amount of sages that are exchanged by the participating transaction

time necessary to complete one checkpoint cannot be bound managers of a long-lived transaction contains a message

in advance; it depends on the execution time of the longest number tag. Transaction managers of a long-lived transaction
transaction classified as a BCPT. It implies that the storage use monotonically increasing numbers in the tag of its outgo-
and processing cost of the checkpointing algorithm may ing messages, and each maintains the tag numbers of the last

become unacceptably high if a long-lived transaction is message it received from other participants. On receiving a
included in the set of BCPT. We discuss the practicality of checkpoint request, a participant compares the message
the non-interfering checkpoints in Section 6. In addition to number attached to the request message with the tag number

that, all the resources used for the execution of such a long- it received last from the coordinator. The participant replies

* lived transaction would be wasted if the transaction must be OK to the coordinator and executes local checkpointing only

re-executed from the beginning due to system failures, if the request tag number is not less than the number it has
maintained. Otherwise, it reports to the coordinator that the

In this section. we extend our checkpointing algorithm checkpointng cannot be executed with that request message.
CPI Zo solve these problems. We assume that each transac-
tion must carry the mark with it. when initiated, which tells If all the replies from the participants a hve and are all

whether it is a normal transaction or a long-lived transaction. OK, the coordinator decides to make all the 1oL.d checkpoits
permanent. Otherwise, the decision is to discard the current
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checkpoint, and to initiate a new checkpoint. This decision is reliable mechanism for writing into the secondary storage
delivered to all parucipants. After a new permanent check- such that a writing operation of a transaction is atomic and
point is taken, any previous checkpoints will be discarded at always successful when the transaction commits. Because
each site. updates of a transaction are reflected in the database only

after the transaction has been successfully executed and com.

S. Consistency of Global Checkpoints mitted, partial results of transactions cannot be included in

In this section we give an informal proof of the checkpoints.

correctness of the algorithm. We show that each mode of The checkpointing algorithm assures that the sequence
operation satisfies the requirement of correctness. Although of actions are executed in some specific order. At each site,
the consistency is our correctness criteria for the checkpoint- conversion of eligible transactior.s occurs after the GCPN is
ing algorithm, the unit for consistency is different for dif- known, and local checkpointing cannot start before the
ferent mode of operation; a transaction is the unit of con- Boolean variable CONVERT becomes true. CONVERT is set
sistency in the global mode, while an event of a transaction is to false at each site after it determines the LCPN, and it
the unit of consistency in the local mode. We first show the becomes true only after the conversion of all the eligible tran-
consistency in the global mode. sactions. Thus, it is not possible for a local checkpoint to save

the state of the database in which some of the eligible transac-
5 C se-G a oions are not reflected because they remain unconverted.,, - 5.1. Consistency in Global Mode

In addition to proving the consistency of te check- We can show that a transaction becomes BCPT if and

points generated by the algorithm in the global mode, we only if its time-stamp is not greater than the current GCPN.
show that the algorithm has another desirable property that This implies that all the eligible BCPT will become BCPT

each checkpoint contains all the updates of transactions with before local checkpointing begins in step 6. Therefore,
earlier time-stamps than its GCPN. This property reduces the updates of all BCPT are reflected in the current checkpoint.

work required in the actual recovery, which is discussed in From the atomic property of transactions provided by
, Section 6. A longer and more thorough discussion on the the transaction control mechanism (e.g. commit protocol in

correctness of the algorithm is given in [191. [17]), it can be assured that if a transaction is committed at a

The properties of the algorithm we want to show are participating site then it is committed at all other participating
sites. Therefore if a transaction is committed at one site, and

(1) a set of all local checkpoints with the same GCPN if it satisfies the time-stamp condition above, its updates are
represents a consistent database state, and reflected in the database and also in the current checkpoint at

(2) all the updates of the committed transactions with ear- all the participating sites.
lier time-stamps than the GCPN are reflected in the
current checkpoint. 5.2. Consistency In Local Mode

Note that only one checkpointing process can be active In order to prove that the algorithm CP2 is correct in
at a time because the checkpointing coordinator is not the local mode of operation, we need to show that a set of
allowed to issue another checkpointing request before the ter- local checkpoints always represents a consistent state of the
mination of the previous one. transaction that is checkpointed. In other words, it is

A A database state is consistent if the set of data objects sufficient to show that if the set of local checkpoints is con-

satisfies the consistency constraints[41. Since a transaction is sistent before the execution of CP2, the set of checkpoints is

the unit of consistency, a database state S is consistent if the also consistent after the completion of CP2.

following holds: Since the initiation point of a transaction is consistent,

(-) For each transaction T, S contains all subtransactions the system has at least one set of consistent checkpoints of a
of T or it contains none of them, transaction (i.e., the initiation point). Therefore, if CP2 does

not generate a new set of checkpoints upon its termination.
(2) If T is contained in S, then each predecessor T' of T is the system has the previous checkpoint which is consistent.

also contained in S. (T' is a predecessor of T if itmat some Without loss of generality, assume a new set of check-later point t oime.) points is taken by CP2. We show by contradiction that the set
l o tof checkpoints after the termination of CP2 is consistent. Sup-

For a set of local checkpoints to be globally consistent, pose it is not consistent. Then there are two transaction
all the local checkpoints with the same GCPN must be con- managers P and Q such that P sent Q a message M after mak-
sistent with each other concerning the updates of transactions ing its checkpoint, and Q received M before making its
that are executed before and after the checkpoint. Therefore, checkpoint. Consider the case that P is the coordinator. Upon
to prove that the algorithm satisfies both properties, it is receiving a request message from the coordinator, Q must
sufficient to show that the updates of a global transaction T have sent OK because Q could not have made its checkpoint

* are included in CP, at each participating site of T, if and only permanent otherwise. It implies that the tag number of the
if time-stamptT) 5 GCPN(CP,). This is enforced by the request message is greater than those of messages Q has
mechanism to determine the value of the GCPN. and by the received, a contradiction. If Q is the coordinator. P cannot
conversion of the temporary ACPT into BCPT. start local checkpointmg before receiving a request message

A transaction is said to be reflected in data objects if from Q. Since Q sent the request message after receiving .
the values of data objects represent the updates made by the P must have received it after it sent M, a contradiction.
transaction. We assume that the database system provides a

S32

J. ..



'. irage 6. Discussion variables can be maintained within a certain threshold level.
-"" nd

ause The desirable propertoes of non-Lnerference and global n-interfering checkpointing would not severely degrade the

P1 only ;cnsistency not only make the checkpointing more compi- performance of the system. A detailed discussion on the prac-

:om- cated in distributed database systems, but also increase the icality of non-interfering checkpointing *.s given in [191.

d in workload of ,te system. It may turn out that the overhead of
the checkpointing mechanism is unacceptably high, in which 6.2. Site Failures

2,.' case the mechanism should be abandoned in spite of its desir- So far, we ass, mcd that no failure occurs during
Site, able properties. The practicality of non-interfering check- checkpointing. This assumption can be justified if the proba-

N is pointing, therefore, depends partially on the amount of extra bility of failures during a single checkpoint is extremely
" e workload incurred by the checkpointing mechanism. In this small. However, it is not always the case, and we now con-
det section we consider practicality of non-interfering check- sider the method to make the algorithm resilient to failures.

pointing algorithms, and discuss the robustness and recoveryi. !dit methods associated with the algorithm CP'2. "During the global mode of operation, the algorithm
miaan- CP2 is insensitive to failures of subordinates. If a subordinate

,c- ave fails before the broadcast of a Checkpoint Request Message,
-ac. 6.1. Practicality of Non-interfering Checkpoints it is excluded from the next checkpoint. If a subordinate does

There are two performance measures that can be used not send its LCPN to the coordinator, it is excluded from the
-1 ad in discussing the practicality of non-interfering checkpoint- current checkpoint. When the site recovers from the failure,
'N ing: extra storage and extra workload required. The extra the recovery manager of the site must find out the GCPN of

:. -iPT storage requirement of the algorithm is simply the committed the latest checkpoint. After receiving information of transac-
re, temporary version (CTV) file size, which is a function of the tions which must be executed for recovery, the recovery

". . expected number of 'CPT of the site, the number of data manager brings the database up to date by executing all the
objects updated by a typical transaction, and the size of the transactions whose time-stamps are not greater than the latest

S•-basic unit of information: GCPN. Other transactions are executed after the s'.ate of the
- n data objects at the site is saved by the checkpoinung process.''"t a CTV file size = Nxx(number of updates)

"VeieNg x(sze of the data object) An atomic commit protocol guarantees that a transac-
x." z od tion is aborted if any participant fails before it sends a

re where NA is the expected number of ACPT of the site. Precommit message to the coordinator. Therefore, site

at The size of the CTV file may become unacceptably failures during the execution of the algorithm cannot affect
" '" the consistency of checkpoints because each checkpoint

. large if NA or the number of updates becomes very large.
Unfortunately, they are determined dynamically from the reflects only the updates of committed BCPT.

" characteristics of transactions submitted to the database svs- In the local mode of operation, a failure of a parici-
n tem, and hence cannot be controlled. Since NA is proportional pant prevents the coordinator from receiving OK from all the
f to the execution time of the longest BCPT at the site, it would participants, or prevents the participants from receiving the
e become unacceptably large if a long-lived transaction is being decision message from the coc-dinator. However, because a

executed whcn a checkpoint begins at the site. The only transaction is aborted by an atomic commit protocol, it is not
'. . parameter we can change in order to reduce the C7V file size necessary to make checkpointing robust to failares of partici-

is the granularity of a data object. The size of the CTV file pants.
can be minimized if we minimize the size of the data object. The algorithm is, however, sensitive to failures of the
By doing so, however, the overhead of normal transaction coordinator. In particular, if the coordinator crashes during
processing (e.g., locking and unlocking, deadlock detection, the first phase of the global mode of operation (i.e., before the
etc) will be increased. Also, there is a trade-off between the GCPN message is sent to subordinates), every transaction

"-. .degree of concurrency and the lock granularity[14]. Therefore becomes ACPT, requiring too much storage for committed
the granularity of a data object should be determined care- temporary versions.

-I-," fully by considering all such trade-offs, and we cannot
mrurmize the site of the CTV file by simply minimizing the One possible solution to this involves the use of a

• data object granularity, number of backup processes; these are processes that can
T o o iiassume responsibility for completing the coordinator's

,-c"The rin ea stoag 8,r151.Hoeveqiretis iruey acuvity in the event of its failure. These backup processes are
scheckpontig mechanisms[l, 8. 15. However this property in fact checkpointing subordinates. If the coordinator fails
is balanced by the cases in which the system must block before it broadcasts the GCPN message, one of the backups
ACPT or abort half-wai done global transactions because of takes the control. A similar mechanism is -ised in SDD-I 171
the checkpomnting process. for reliable commitment of transactions. Proper coordinauon

The extra workload imposed by the algorithm mainly among the backup processes is crucial here. In the event of
onsists of the workload for (1) determining iJ,e GCPN. (2) the failure of the coordinator, one, and only one backup pro-

committing ACPT (move data objects to the CTV file), (3) cess has to assume the control. The algonthm for accomplish-
reflecting the CTV file (move committed temporary versions ing this assumes an ordering among the backup processes,
from the CTV file to the database), and (4) making the CTV designated is order as pt, p2 ., p.. Process p _ is referred to
file clear when the reflect operation is finished. Among these, as the predecessor of process p, (for k > 0), and the coordina-
workload for (2) and (3) dominates others. As in exLa storage tor is taken as the predecessor of process Pi,
estimation, they are determined by the number of ACPT and We assume that the network service enables processes
the number of updates. Therefore, as far as the values of these to be informed when a given site achieves a specifed status
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x."."(simply'UP or DOWN in this case). Initially, each of the recovery. The second property of the algorithm (i.e., each
-"':backup processes checks the failure of its predecessor. Then checkpoint reflects all the updlates of transactions with earlier
.... the following rules are used. time-stamps than its GCPN) is useful in reducing the amount

"-" "-' ~(1) If the predecessor is found to be down. then the pro- o erhn eas h e ftascin hs pae
cess beist"hc h rdcesro haldpo must be redone can be determined by the simple comparison

.-. cess.bgn ocektepeecsro h aldpo of the time-stamps of transactions with the GCPN ot" the

~checkpoint. Complete recovery mechanisms based on the spe-
.,(2) If the coordinator is found to be downm the first backup cial time-starmp of checkpoints (e.g., GCPN) have been pro-

'." process assumes the control of checkpointing, posed in [9, 201.

, (3) If a backup process recovers, it ceases to be a part of After the site recovery is completed using either a fast
the current checkpointing, recovery procedure or a complete recovery procedure, the

"""(4) After each checkpoint, the list of backup processes is recovering site checks whether it has completed a local mode
adjusted by including all t.he UP sites. checkpointing for any long-lived transactions. If any local

mode checkpoints are found, those transactions can be res-
,.he Toeseirnlsoguarantee tatthte mostko process, eie tatted from the saved checkpoints. In this case, the coordina-

• .-.. he oorinaor o on ofthebacup poceses wil b in tor of the transaction requests all the participants to restart
'?' .control at any given Lime. Thus a checkpointing will ter- from their checkpoints if and only if they all ae able to restart

miat inafnt-ie nei eis from that checkpoint. 'Me coordinator makes a decision
' whether to restart the transaction from the checkpoint or from

The recovery from site crashes is called the site and sends the decision message to all the participants. We
recovery. The complexity of the site recovery varies in distri- provide such a two-phase recovery protocol in order to main-

':..."buted datbase systems according to the failure situationi[151. tain the consistency of the databae in case of damaged

,'"" If the crashed site has no replicated data objects and if all the checkpoints at the failure site. A transaction will be restarted
.' recovery information is available at the crashed site, local from the beginning if any participant is not able to restore the

. "recovery is enough. Global recovery is necessary because of hcpitdsaeotetrncinfrayraon
failures which require the global database to be restored to

•some earlier consistent state. For instance, if the transaction 7. Concluding Remarks

.5-.'¢

log is partially destroyed at the crashed site, local recovery During normal operation of the database system,
. ackucannot be executed to completion. checkpoining is performed to save information necessary for

.When a global flwgr e i re equired, the database sys- recovery from a failure. For better recoverabiity and avaa-
1te has two alternatives: a fast recovery and a coplete bility of distributed database systems, checkpointing must be
recovery. A fast recovery is a simple restoration of the latest able to generate a globally consistent database state, without

global checkpoint. Since each checkpoint generated by the interfering with transaction processing. Site autonomy in dis-

aalgorithm is globally consistent tod the f the data- ctibuted database systems makes the checkpointing more
base is assured to be consistent. However, all the transactions complicated than in centralized database systems. Also,
3)co ftted during the time interval from the latest checkpoint long-lived transactions may substantially increase the over-
until the time of crash would be lost. A complete recovery is head associated with non-interfering checkpointing, and make
performed to restore as many transactions that can be redone it unacceptable in many applications of the distributed sys-
as possible. The trade-offs between the two recovery methods ter. In this paper, a new checkpointing algorithm for distri-
are the recovery time and the number of transactions saved by buted database systems is presented and discussed. Te

- _. the recovery octness of the algorithm is shown, and the robusn ess of
controlQatckyegiveny tim Thiurs is crckiti g wl toerp- fo gtheihm and recovery procedures associated with it are
inaick fiecey fo aiesf tc chepiitio crinar mesi- a es

.,. ,cations of distributed database systems which require high dicse.Frteapctoninwchheytmmutx-availability (e.g., bawistic missie defense or air traffic con- cute a mixture of short and long-lived transactions, and the
o. Reory ability o continuous processing of transactions is so critical

T h v o c s la the cion mssa ftao all the participant.g We
. the lives of human beings, may depend on the correct values t p e suc a t ascreov ptoi orer t i

- "- ba yot feasible, we believeat the algorithm presented in this
of the data and the accessibility to it. Availability of a con- paper provides a practical solution to the problem of check-
sistent state is of primary concern for them. not the most up-tfrom ahe beginnin in paricpt itabe tosestrtodate consistent state. If a simple restoration of the latest epointed se ofernstiontfo any seas.

checkpoint culd bring the database to a onsiestate it

" ',,, "may not be worthwhile to spend time in recovery by execut-0.-.." ing a complete recovery to oer acsome of the transactions.
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